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NOTATIONS AND DEFINITION 

The following notations and definitions are utilized throughout the report: 

(a)  Notations: 

E :     Modulus of elasticity      

ν :     Poisson’s ratio                 

ρ :     Density                              

t :      Thickness     

yF :  Yield strength                  

(b)  Definitions: 

Slenderness Ratio: The ratio of the effective length of a column to the radius of gyration of the 

column, both with respect to the same axis of bending. In algebra form, the slenderness ratio is: 

KL/r. The slenderness ratio was an important term for columns behavior. A column with larger 

slenderness ratio is unstable. According to the AISC LRFD Specifications, Article B7, the 

slenderness ratio of a compression member, KL/r, should not exceed 200. 

 (
A
Ir = , A is the area of cross section of the column; I = the least moment of inertia of the 

column section; K = the effective coefficient; L = the actual length of the column. KL = effective 

length (length of an equivalent hinged-hinged column)). 

Maximum Deflection: The maximum value of member deformation along its length. Limitation 

for the maximum deflection is normally specified in the Design code. The deflection limitation 

of basic panel deformation was L/240 = 0.45 inch, and the limitation of column deformation was 

L/360 = 0.3 inch. 

Maximum Rotation: The maximum value of rotated angle about member axis along its length. 



 

xi 

Maximum tensile (compressive) stress: The maximum positive (negative) value of the node 

stress. The limitation of the maximum stress of the steel facing is: 

ksiksiFsteel 05.283385.0 =×=φ  (Yield strength ksiFy 33= ). 
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PROJECT SUMMARY 

The Sandwich Panel Technologies including Structural Insulated Panels (SIPs) can be 

used to replace the conventional wooden-frame construction method.  The main purpose of this 

Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC and 

SGI Venture, Inc. was to design a novel high R-value type of metal sandwich panelized 

technology. This CRADA project report presents design concept discussion and numerical 

analysis results from thermal performance study of this new building envelope system. The main 

objective of this work was to develop a basic concept of a new generation of wall panel 

technologies which will have R-value over R-20 will use thermal mass to improve energy 

performance in cooling dominated climates and will be 100% termite resistant.  

The main advantages of using sandwich panels are as follows: (1) better energy saving 

structural panels with high and uniform overall wall R-value across the elevation that could not 

be achieved in traditional walls; and (2) reducing the use of raw materials or need for virgin 

lumber.  For better utilization of these Sandwich panels, engineers need to have a thorough 

understanding of the actual performance of the panels and system.  Detailed analysis and study 

on the capacities and deformation of individual panels and its assembly have to be performed to 

achieve that goal.  The major project activity was to conduct structural analysis of the stresses, 

strains, load capacities, and deformations of individual sandwich components under various load 

cases.  The analysis simulated the actual loading conditions of the regular residential building 

and used actual material properties of the steel facings and foam. 
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PROJECT OBJECTIVES 

The main purpose of this Cooperative Research and Development Agreement (CRADA) 

between UT-Battelle, LLC and SGI Venture Inc. was to design a novel high R-value type of 

metal sandwich panelized technology This CRADA project report presents design concept 

discussion and numerical analysis results from thermal performance study of this new building 

envelope system. The main objective of this work was to develop a basic concept of a new 

generation of wall panel technologies which will have R-value over R-20 will use thermal mass 

to improve energy performance in cooling dominated climates and will be 100% termite 

resistant.  

In recent years, increased levels of insulation, high-performance windows, improved 

construction practices that reduce air leakage and sensible and latent heat-recovery ventilators 

have significantly reduced heating and cooling loads.  Continued improvements in these building 

envelope technologies suggests that in the near future residences could be routinely constructed 

with very low heating and cooling loads. Thus, it is clear that developing very low-energy houses 

will require improved integration between the traditional building envelope and new features like 

active thermal mass, radiant barriers, cool surfaces, etc.   

The proposed building envelope technology maximizes this integration by utilizing a 

highly-efficient building envelope with high-R thermal insulation, active thermal mass and 

superior air-tightness. The project team approach was to combine four common building 

technologies in a novel way. Structural Insulated Panel (SIP) technology was utilized as a 

structural vehicle and for high-R thermal insulation. Novel approach to panel-to-panel 

connections provided excellent air and moisture tightness, but it also works in a similar way as 

conventional wall framing.  
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Thermal mass effect will be provided by proprietary thermally-active inserts. It is 

anticipated that, these new wall panels will utilize internal radiant barriers. Application of steel 

panel facing will provide impermeable surfaces minimizing degradation of the system R-value 

(foam aging process caused by the emission to the atmosphere of the foam blowing agent). An 

application of only steel components (no wood) will provide 100% termite resistance of the 

proposed wall technology.  In addition, the panels are lightweight and will be 100% recyclable.  

Structures made of the panels can be dismantled, moved and reconfigured into a different 

structure.  We believe that the research proposed here points the way to a new generation of 

affordable, comfortable, very-low energy buildings that are easily integrated with renewable and 

fuel cell energy-conversion technologies. 

The major objective of the project was to conduct structural analysis of the stresses, strains, 

load capacities, and deformations of individual sandwich components under various load cases.  

The analysis simulated the actual loading conditions of the regular residential building and used 

actual material properties of the steel facings and foam. The research team used ANSYS 8.0 

software to perform the proposed analysis.  The obtained results include the stress and strain 

levels, deformation, and load capacities of the structural components of sandwich system, such 

as panels, columns, and header, under various loading conditions. The analytical results would 

enhance the understanding of the structural performance of sandwich panels. 

The research revealed the following results: (a) For the panel with metal facing Gage 24, 

25 and 26, the maximum deformation occurred at about middle height of the panels, the 

maximum tensile stress in longitudinal direction occurred at the bottom of the front steel facing 

and the maximum compressive stress occurs at about 45'' from the top surface of the front steel 

facing. The magnitude of the column deformation depended on the modulus of elasticity of foam. 
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(b) The slenderness ratios of C-channel columns and Delta columns were less than the limitation 

of 200 and the columns were acceptable.  The slenderness ratios of original columns, however, 

were larger than the specified limitation, and the columns were not acceptable for lateral stability. 

Torsional deformation (twist) could be clearly observed in the C-shape columns under loading 

due to the asymmetry about the weak axis in the cross-section. The delta-shape and original 

columns exhibited flexural buckling deformation only. The analysis of stresses and deformations 

showed Delta columns made of 16 gage and 18 gage steel were the only columns that met 

structural requirements for load scenario  when columns were subjected to wind load based on 

36 in wide tributary area;  

In the window header, the maximum tensile and compressive stresses in steel occurred at 

the bottom of the front facing, close to the support while the maximum compressive stress in the 

PU foam were almost equal to zero, indicating the steel facings carried almost all of the loads on 

the window header. 
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CRADA BENEFITS TO DOE 

The main purpose of this Cooperative Research and Development Agreement (CRADA) 

between UT-Battelle, LLC and SGI Venture Inc. was to design a basic concept of a new 

generation of metal sandwich panelized technologies. The primary goal of this CRADA was 

conceptual development of a new type of building envelope technology which will have an R-

value over R-20 and will use thermal mass to improve energy performance in cooling dominated 

climates and will be 100% termite resistant. The second project goal was experimental and 

numerical analysis of the structural performance of metal sandwich panels with relatively 

complex, multilayer configuration of two or more different materials or subsystems, including 

intermediate panel connectors, novel structural members, core foam materials, and the occasional 

use of phase change materials.  

Performed numerical analysis demonstrated excellent structural performance of new 

sandwich panels. It was found that twist or torsional deformation could be clearly observed in the 

C-shape columns under loading due to the asymmetry about the weak axis in the cross-section. 

The newly developed delta-shape and original columns exhibited flexural buckling deformation 

only. The maximum deformations of delta-shape and original columns occurred at about 45''- 46'' 

from the top surfaces of the columns. The stresses, deformations and slenderness ratios in C-

channel columns and Delta columns were acceptable when columns were subjected to wind load 

based on the column area only. The slenderness ratio of original columns was unacceptable. 

Only Delta columns made of 16 and 18 gage steel met all of the design criteria when the columns 

subjected to wind load based on 36 in wide tributary area (24 in. for C-shape column). For 

columns with the same Gage and under the same loads, the Delta column had the smallest stress 

and the original column had the largest stress.  Considering the deformation, slenderness ratio 
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and stresses of the columns, Delta-columns made of 16 and 18 gage steel were the best choice 

among the columns studied in this project. 

We believe that the research results described here points the way to a new generation of 

affordable, comfortable, very-low energy buildings. 
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CHAPTER 1 

INTRODUCTION 

Most residential buildings in the USA are made of wood-frames, constructed with lumbers 

and nailed together to form the skeleton of the buildings. Although these buildings are 

economical to build, they have faced concerns on effective utilization of natural resources (wood) 

and their durability performance. As construction grows, experts are expecting a shortage in 

construction material supply, especially the raw materials.  The shortage of the construction 

materials would lead to the price increase for the materials and as a result, the increasing price 

gouges the homeowners and construction industry. It is very common that, the wood-framed 

buildings are susceptible to moisture and air leakage to and from outside the building, which 

generates higher energy consumption, and very often moisture-related durability problem. In 

case of using steel-studs, the overall R-value of the building is reduced considerably by thermal 

bridging. Furthermore, the thermal shorts along the wall can often lead to local de-colorization of 

the wall surfaces or sometimes water condensation that can attract mildew.  Therefore, a 

development of structural insulated building panels that could overcome the shortcomings of the 

wood-frames structures is in high demand now. The sandwich panels developed by Dr. Jan 

Kosny at the Oak Ridge National Laboratory (ORNL) are the ones to meet these needs for 

residential buildings. This technology consists of insulation foam core and structural metal 

facings.  The foam core can be made of expanded polystyrene (EPS), polyurethane or 

polyisocyanurate foam and is sandwiched between two metal skins.  

When these panels are engineered and assembled properly, they will act as load bearing 

structural members and need no frame of skeleton.  For better utilization of these panels, 

engineers need to have a thorough understanding of the actual performance of the panels and 
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other system components.  Detailed analysis of the load capacities and potential deformation of 

individual panels and their assembly had to be performed to achieve this goal.   

The main objective of this project is to conduct structural analysis of the stresses, strains, 

load capacities, and deformations of individual technology components under various load cases.  

The analysis simulated the actual loading conditions of the regular residential building and used 

actual material properties of the steel facing of steel structural columns and foam. The research 

team used ANSYS 8.0 software to perform the proposed analysis.  The analytical results would 

enhance the understanding of the structural performance of the sandwich wall system.   

The following research approaches were undertaken to achieve the objectives of this study.   

The material properties of the panel components including skins and foam were carefully 

selected first because the accuracy of the material properties is crucial to correctness of the 

analysis.  The basic dimensions of the panels and columns were obtained from the information 

provided by Dr. Kosny from the ORNL. 

The modeling and analysis began with the main sandwich panel component.  The panel 

was precisely modeled following the finalized dimensions and collected material properties. 

Three gages of the steel facing, gages 24, 25, and 26, were considered in the analysis. The loads 

on the panel simulated the actual load conditions in low-rise residential buildings that included 

the gravity load and wind load.  The analytical results included the stresses and strains, the axial 

and flexural load capacities, and deformations of the panels. 

The system columns were modeled in a similar manner as the panel.   The system column 

was the most important structural elements in the structural insulated panel (SIP) system.  A total 

of three types of system columns were analyzed, they are originally proposed columns, C-

channel columns, and Delta columns.  For each column type, two or more metal gages of the 
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steel facings were considered.  A comparison of the structural performance of the analyzed 

columns was also conducted. In addition, the slenderness ratio of each column type was 

examined.  

The window/door header was the flexural member in the sandwich system. The top and 

bottom C-shape tracks in the header were the major element in carrying the bending moment.  

These elements were modeled precisely in accordance to the header details.  Distributed loads 

were applied along the length of the header.  The load capacity on the header was determined 

based on the maximum allowable stresses in the header components. 

This report summarizes the findings of the research activities conducted on the request of 

SustainBuild, LLC.  The results include the stress and strain levels as well as the deformation of 

the panels, columns, and header under various loading conditions. The load capacities of these 

structural components are also presented in the report.   
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CHAPTER 2 

GENERAL INFORMATION OF STRUCTURAL INSULTED PANELS (SIPs) 

2.1 Foam Properties  

The foam properties used in this study were mostly based on the information found Dyplast 

Products Polyisocyanurate insulation (ISO-C1) Specifications.  DP-ISO-C1 is rigid closed-cell 

polyisocyanurate thermal insulation foam that can be fabricated into any required shape.  The 

ISO-C1 has been tested according to 18 ASTM Specifications for various material properties.  

Based on ASTM E84 standards, ISO-C1 has a Class 1 flame spread/smoke development rating, 

and the highest R-value per inch of any commercially available insulation. The Dyplast Product 

ISO-C1 was available in 2, 2.5, 3, and 4 lb/ft3 densities. Tables 2.1 through 2.4 show the physical 

properties of the ISO-C1 Polyisocyanurate rigid foam insulation used in analysis. 

 
 
 

Table 2.1 Polyisocyanurate rigid foam insulation (nominal 2 lb. density) 

Physical Properties ASTM Method English Units 
Density D 1622 2.1 lb/ft3 
Compressive Strength D 1621     
Parallel to Rise (Thickness)   26 lb/in2 
Perpendicular to Rise (Width)   29 lb/in2 
Shear Strength: Parallel and Perpendicular C 273 27 lb/in2 
Shear Modulus C 273 346 lb/in2 
Tensile Strength: Parallel and Perpendicular D 1623 33 lb/in2 
Flexural Strength: Parallel and Perpendicular C 203 54 lb/in2 
Flexural Modulus C 203 864 lb/in2 
Closed Cell Content D 2856 >95 % 
Buoyancy   TBD lb/ft3 
Water Absorption C 272 0.24 % by volume 
Water Vapor Permeance E 96 2.33 perm-inch 

Service Temperature3   -297 to 
+300 

°F 

 

http://www.dyplastproducts.com/polyisocyanurate_bunstock/pdf/ISOC1-20_DataSheet_0112.pdf�
http://www.dyplastproducts.com/polyisocyanurate_bunstock/pdf/ISOC1-25_DataSheet_0112.pdf�
http://www.dyplastproducts.com/polyisocyanurate_bunstock/pdf/ISOC1-30_DataSheet_0706.pdf�
http://www.dyplastproducts.com/phys_prop_define.htm#density�
http://www.dyplastproducts.com/phys_prop_define.htm#comp_strength�
http://www.dyplastproducts.com/phys_prop_define.htm#shear_strength�
http://www.dyplastproducts.com/phys_prop_define.htm#shear_modulus�
http://www.dyplastproducts.com/phys_prop_define.htm#tensile_strength�
http://www.dyplastproducts.com/phys_prop_define.htm#flex_strength�
http://www.dyplastproducts.com/phys_prop_define.htm#flex_modulus�
http://www.dyplastproducts.com/phys_prop_define.htm#closed_cell�
http://www.dyplastproducts.com/phys_prop_define.htm#buoyancy�
http://www.dyplastproducts.com/phys_prop_define.htm#water_absorp�
http://www.dyplastproducts.com/phys_prop_define.htm#water_vapr_perm�
http://www.dyplastproducts.com/ISO-C1_service_temperature.htm�
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Table 2.2 Polyisocyanurate rigid foam insulation (nominal 2.5 lb. density) 

Physical Properties ASTM Method English Units 
Density D 1622 2.5 lb/ft3 
Compressive Strength D 1621     
Parallel to Rise (Thickness)   37 lb/in2 
Perpendicular to Rise (Width)   31 lb/in2 
Shear Strength: Parallel and Perpendicular C 273 26 lb/in2 
Shear Modulus C 273 253 lb/in2 
Tensile Strength: Parallel and Perpendicular D 1623 43 lb/in2 
Flexural Strength: Parallel and Perpendicular C 203 56 lb/in2 
Flexural Modulus   C 203 961 lb/in2 
Closed Cell Content D 2856 >98 % 
Buoyancy   TBD lb/ft3 
Water Absorption C 272 <0.1 % by volume 
Water Vapor Permeance E 96 2.23 perm-inch 
Service Temperature3   -297 to 

+300 
°F 

 
 
 
 
 

Table 2.3 Polyisocyanurate rigid foam insulation (nominal 3 lb. density) 

Physical Properties ASTM Method English Units 
Density D 1622 3 lb/ft3 
Compressive Strength3 D 1621     
Parallel to Rise (Thickness)   45 lb/in2 
Perpendicular to Rise (Width)   38 lb/in2 
Shear Strength: Parallel and Perpendicular C 273 30 lb/in2 
Shear Modulus C 273 289 lb/in2 
Tensile Strength: Parallel and Perpendicular D 1623 47 lb/in2 
Flexural Strength: Parallel and Perpendicular C 203 70 lb/in2 
Flexural Modulus C 203 1290 lb/in2 
Closed Cell Content D 2856 >98 % 
Buoyancy   TBD lb/ft3 
Water Absorption C 272 <0.1 % by volume 
Water Vapor Permeance E 96 1.98 perm-inch 
Service Temperature3   -297 to 

+300 
°F 

 
 

http://www.dyplastproducts.com/phys_prop_define.htm#density�
http://www.dyplastproducts.com/phys_prop_define.htm#comp_strength�
http://www.dyplastproducts.com/phys_prop_define.htm#shear_strength�
http://www.dyplastproducts.com/phys_prop_define.htm#shear_modulus�
http://www.dyplastproducts.com/phys_prop_define.htm#tensile_strength�
http://www.dyplastproducts.com/phys_prop_define.htm#flex_strength�
http://www.dyplastproducts.com/phys_prop_define.htm#flex_modulus�
http://www.dyplastproducts.com/phys_prop_define.htm#closed_cell�
http://www.dyplastproducts.com/phys_prop_define.htm#buoyancy�
http://www.dyplastproducts.com/phys_prop_define.htm#water_absorp�
http://www.dyplastproducts.com/phys_prop_define.htm#water_vapr_perm�
http://www.dyplastproducts.com/phys_prop_define.htm#service_temp�
http://www.dyplastproducts.com/phys_prop_define.htm#density�
http://www.dyplastproducts.com/phys_prop_define.htm#comp_strength�
http://www.dyplastproducts.com/phys_prop_define.htm#shear_strength�
http://www.dyplastproducts.com/phys_prop_define.htm#shear_modulus�
http://www.dyplastproducts.com/phys_prop_define.htm#tensile_strength�
http://www.dyplastproducts.com/phys_prop_define.htm#flex_strength�
http://www.dyplastproducts.com/phys_prop_define.htm#flex#modulus�
http://www.dyplastproducts.com/phys_prop_define.htm#closed_cell�
http://www.dyplastproducts.com/phys_prop_define.htm#buoyancy�
http://www.dyplastproducts.com/phys_prop_define.htm#water_absorp�
http://www.dyplastproducts.com/phys_prop_define.htm#water_vapr_perm�
http://www.dyplastproducts.com/phys_prop_define.htm#service_temp�
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Table 2.4 Polyisocyanurate rigid foam insulation (nominal 4 lb. density) 

Physical Properties ASTM Method English Units 
Density3 D 1622 4 lb/ft3 
Compressive Strength3 D 1621     
Parallel to Rise (Thickness)   82 lb/in2 
Perpendicular to Rise (Width)   73 lb/in2 
Shear Strength: Parallel and Perpendicular C 273 34.4 lb/in2 
Shear Modulus C 273 315 lb/in2 
Tensile Strength: Parallel and Perpendicular D 1623 61 lb/in2 
Flexural Strength: Parallel and Perpendicular C 203 123 lb/in 2 
Flexural Modulus C 203 2331 lb/in2 
Closed Cell Content D 2856 >98 % 
Buoyancy   TBD lb/ft3 
Water Absorption C 272 <0.1 % by volume 
Water Vapor Permeance E 96 0.7 perm-inch 
Service Temperature3   -297 to +300 °F 
 

The research team also collected the information on properties from the BASF Corporation. 

Their product Elastospray 82302 was a two component, polyurethane spray foam system with a 

unit weight ranging from 2.0 to 3.0 lb/ft3.  Although, according to the data sheet, the available 

structural property was the compressive strength only, the information was helpful in 

determining the material properties used for analysis of the ORNL sandwich panels. Table 2.5 

shows the approximate properties of PU foam with a density of 3 lb/ft3 used in this research.  

 
Table 2.5 Properties of PU foam of SIPs system 

Physical Properties English Units 
Density3 3 lb/ft3 
Shear Modulus 1000 lb/in2 
Poisson’s ratio 0.4 / 
Compressive strength 50 psi 
Tensile strength 70 psi 
Shear strength 50 psi 
Flexural strength 70 psi 

http://www.dyplastproducts.com/phys_prop_define.htm#density�
http://www.dyplastproducts.com/phys_prop_define.htm#comp_strength�
http://www.dyplastproducts.com/phys_prop_define.htm#shear_strength�
http://www.dyplastproducts.com/phys_prop_define.htm#shear_modulus�
http://www.dyplastproducts.com/phys_prop_define.htm#tensile_strength�
http://www.dyplastproducts.com/phys_prop_define.htm#flex_strength�
http://www.dyplastproducts.com/phys_prop_define.htm#flex_modulus�
http://www.dyplastproducts.com/phys_prop_define.htm#closed_cell�
http://www.dyplastproducts.com/phys_prop_define.htm#buoyancy�
http://www.dyplastproducts.com/phys_prop_define.htm#water_absorp�
http://www.dyplastproducts.com/phys_prop_define.htm#water_vapr_perm�
http://www.dyplastproducts.com/phys_prop_define.htm#service_temp�
http://www.dyplastproducts.com/phys_prop_define.htm#density�
http://www.dyplastproducts.com/phys_prop_define.htm#shear_modulus�
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2.2 Variation of steel thickness Gages and associated sandwich components 

In this research, the panels, columns, and system header made of different steel thicknesses 

were investigated. The use of varied metal gages allowed the research team to conduct a 

parametric study for the performance of wall sandwiches and other system components. Table 

2.6 shows the properties of steel facings. Table 2.7 lists the basic panel, system columns and 

window header studied in this research. 

 
Table 2.6 Material property of the steel facings of the SIPs panel 

Steel thickness t (in.) )(ksiFy  )(ksiE  ν  )( pciρ  
16 Gage  0.0598 33 29000 0.3 0.284 
18 Gage  0.0478 33 29000 0.3 0.284 
20 Gage  0.0359 33 29000 0.3 0.284 
24 Gage  0.0239 33 29000 0.3 0.284 
25 Gage  0.0209 33 29000 0.3 0.284 
26 Gage  0.0179 33 29000 0.3 0.284 

 

 

Table 2.7 SIP system components studied 

Steel 
thickness 

Basic  
panel 

C-shape column Delta-shape column Original 
column 

Window 
header 2×4 2×6 Welded Non-welded 

16 Gage  N Y Y Y Y Y Y 
18 Gage  N N N Y Y Y N 
20 Gage  N Y Y Y Y Y N 
24 Gage  

 

Y N N N N N N 
25 Gage  Y N N N N N N 
26 Gage  Y N N N N N N 

    Note:   Y denotes the gage will be studied; N denotes the gage won’t be studied. 
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2.3 Loads   

Loads applied on the analyzed sandwich wall system include the dead loads, live loads and 

wind load. Dead loads of the panel include the self-weight of the studied component. Live loads 

and wind load were introduced based on the analysis of residential building. The plane 

dimensions of low-rise residential buildings were assumed as shown in Figure 2.1. The height of the 

basic wall panel and system column was 9 ft (108 inches). 

 

Figure 2.1 The plan view of the low-rise residential building (unit: feet) 

2.3.1 Loads of the basic panel 

 
2.3.1.1 Live load of the panels 

The live load of the basic panel was calculated according the ASCE – 7 Standard 

Specifications – Minimum Design Loads for Buildings and Other Structures (ASCE 7-98). 

Live load (floor): L_fl = 50psf; Live load (Roof): L_rf = 20psf; 

From Figure 2.1, the circumference of the building C = 150 ft and the area A = 1,350 ft2. 

The average width of the basic panel Width = 3.04 in. Therefore, live load due to occupancy: L= 

L_fl ×A/C/Width = 12.34 psi; and roof live load: Lr = L_rf ×A/C/Width = 24.93 psi. The 

summation of the live load on the basic panel LL = L + Lr =17.27 psi. 



 

10 

2.3.1.2 Rain load of the panels 

The design rainfall for the building is 3 inches per hour, and the runoff quantity for each scupper is 

Q = 0.0104 Ai = 42.12, assuming the scuppers are 4 inches above the roof surface.  Referring to the 

specification, the hydraulic head at this flow rate for the scupper used dh=1.754. The design roof rain load, 

then, was Rain = 5.2 (ds + dh) = 30psf. The rain load on the basic panel was: 

R= Rain ×A/C/Width = 7.40 psi 

2.3.1.3 Snow load of the panels 

According to the specification, Snow load was assumed: Snow = 20 psf. Snow load on 

the basic panel S = Snow × A/C/Width = 4.93psi 

2.3.1.4 Wind load of the panels 

In wind load calculation, the basic wind load was taken as V = 100 mph; Important factor: 

I = 1.0; Directionality factor Kd = 0.85; Velocity pressure exposure coefficient Kz = 0.912; GCpf = 

0.8 (The external pressure coefficient, which was found using Figures 6-5 to 6-7 in ASCE 7-98); 

GCpi=0.18 (The internal pressure coefficient and was found on Table 6-7 in ASCE 7-98);  The 

velocity pressure, pounds per square foot, was computed from the equation 

qh = 0.00256KdKzV2I = 19.85 psf 

The design pressure, in units of pounds per square foot, for wind loads acting on the 

components and cladding of a low-rise building was specified in Section 6.5.12.4.1 of ASCE 7-

98. That pressure can then be calculated from  

P = qh [(GCpf) ± ( GCpi)] = 19.6 psf = 0.136 psi 

2.3.2 Loads of the system column 

The two following cases of column loading conditions were considered in the study; 

Case 1- column carried wind load based on column area only;   
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Case 2- column carried wind load based on 36 in wide tributary area (column spacing) for Delta-

shape and original system columns and 24 in wide tributary area for C-shape column. The 

deformations and stresses of the system columns were determined under the Case1 load and Case 

2 load, respectively. 

2.3.2.1 Live load of the system column 

The values of the vertical loads which were applied on the column were determined 

according to the dimensions of column and directly connected panel. For example, the 

circumference of the Delta-shape column was Cdelta = 24.002 inches; the area of the basic panel 

Ap = 110.4934 inch2; the live load applied on the panel was LL =L + Lr = 17.27 psi. Then the live 

load applied the Delta-shape was: PL = LL*Ap/ Cdelta = 79.503 (lb/in). The live loads of the other 

system columns were calculated according to the similar procedure. 

2.3.2.2 Wind load of the system column 

The width of the front side of Delta-shape column was 3.5 in. When the Delta-shape 

column was to carry wind load based on 36 in wide tributary area (column spacing), the wind 

load of the Delta-shape column in load Case 2 became: W=0.136 psi *36in./3.5in. =1.3989 psi. 

The wind load of the other system column was calculated according to the similar procedure. 

2.3.3 Loads of the window header 

 The header carries the vertical load that was transferred from the weight of the panel. The 

height of the basic panel above the window header was assumed as 3 feet, which was one-third 

of the height of the basic panel. The self-weight of the basic panel was 35.476 lbs for foam and 

96.61 lbs for steel facings. The cross-sectional area of the window header Ah= 37.833 in2.  Then, 

the gravity load of the window header Ph = (35.476+96.61)/Ah/3 = 1.164psi. 
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2.4 Finite Element Analysis Procedure 

ANSYS finite element analysis software is used in the modeling of the ORNL sandwich 

wall system.  Shell elements (Shell181) are used to model the metal facings and solid elements 

(Solid45) are used to model the foam between the facings.  

SOLID45 is used for the 3-D modeling of solid structures. The element is defined by eight 

nodes having three degrees of freedom at each node: translations in the nodal x, y, and z 

directions. The element has plasticity, creep, swelling, stress stiffening, large deflection, and 

large strain capabilities. A reduced integration option with hourglass control is available. Figure 

2.2 shows the geometry of Solid45. 

SHELL181 is suitable for analyzing thin to moderately-thick shell structures. It is a 4-node 

element with six degrees of freedom at each node: translations in the x, y, and z directions, and 

rotations about the x, y, and z-axes. SHELL181 is well-suited for linear, large rotation, and/or 

large strain nonlinear applications. Change in shell thickness is accounted for in nonlinear 

analyses. In the element domain, both full and reduced integration schemes are supported. 

SHELL181 accounts for follower (load stiffness) effects of distributed pressures. Figure 2.3 

shows the geometry of Shell181. 
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Figure 2.2 Solid45 Geometry 

 
 

Figure 2.3 Shell181 Geometry 
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CHAPTER 3 

MODELING AND ANALYSIS OF WALL PANELS 

The basic panel was the first structural system component to be modeled and analyzed.  

Three following thicknesses of the wall panel facings were studied, 24, 25, 26 -gage.  

3.1 Description of input and modeling of the basic panel 

3.1.1 Dimensions and modeling of the basic panel 

Figure 3.1 shows the basic dimension of the cross-section of the panel and Figure 3.2 shows 

the longitudinal dimension of the panel. 

 
Figure 3.1 Cross-section of the basic panel model (unit: inches) 
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Figure 3.2 Elevation of the panel model 
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3.1.2 Finite element model of basic sandwich panel  

Shell elements (Shell181) were used to model the metal facings and solid elements (Solid45) 

were used to model the foam core between the facings. As shown in Figure. 3.4, the model was 

restrained with pin supports at the top of the panel and fix supports at the bottom except the rotation 

about x direction. 

 
Figure 3.3 Basic panel model 

 
Figure 3.4 Panel model with end restrains 
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3.1.3 Loads 

Live load:  2487 =psf 17.27 psi, applied on the top of the panel. 

Wind load:  19.60 =psf  0.136 psi, applied on the steel facing of the panel. 

Dead load: Self-weight of the panel are listed in Table 3.1. 

Table 3.1 Dead load of the panel (unit: lbs) 

 24 Gage 25 Gage 26 Gage 

Foam 35.476 35.476 35.476 

Steel Sheets 96.61 84.48 72.36 

 

 
Figure 3.5 Loads on the panel model  
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3.2 Analytical Results of the Sandwich Panel 

3.2.1 Deformation 

Figures 3.6, 3.7 and 3.8 show the lateral deformation of panels with 24, 25 and 26 gage, 

respectively. As the thickness of the steel facing increased, the deformation of the panel decreased. 

 

Figure 3.6 Deformation of the panel with 24 Gage (unit: inches) 

 

 

 



 

20 

 

Figure 3.7 Deformation of the panel with 25 Gage (unit: inches) 

 

Figure 3.8 Deformation of the panel with 26 Gage (unit: inches) 
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3.2.2 Stress and strain 

Figures 3.9 through 3.14 show the stresses in steel facings of the panels and Figures 3.15 

through 3.20, show the stresses in the longitudinal direction (z direction) in foam of the panels. 

The panels were composed of 24, 25 or 26 gage steel facings.  The panel stresses were presented 

in the format of stress contours.  The stress values in steel facings and foams were shown in the 

stress value bar that matched with the color in the contour.  

 
Figure 3.9 Stresses in z direction in the front steel facing with 24 Gage (unit: psi) 
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Figure 3.10 Stresses in z direction in the front steel facing with 25 Gage (unit: psi) 

 
Figure 3.11 Stresses in z direction in the front steel facing with 26 Gage (unit: psi) 
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Figure 3.12 Stresses in z direction in the back steel facing with 24 Gage (unit: psi) 

 
Figure 3.13 Stresses in z direction in the back steel facing with 25 Gage (unit: psi) 
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Figure 3.14 Stresses in z direction in the back steel facing with 26 Gage (unit: psi) 

 
Figure 3.15 Stresses in z direction in the front side of foam with 24 Gage (unit: psi) 
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Figure 3.16 Stresses in z direction in the front side of foam with 25 Gage (unit: psi) 

 
Figure 3.17 Stresses in z direction in the front side of foam with 26 Gage (unit: psi) 
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Figure 3.18 Stresses in z direction in the back side of foam with 24 Gage (unit: psi) 

 
Figure 3.19 Stresses in z direction in the back side of foam with 25 Gage (unit: psi) 
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Figure 3.20 Stresses in z direction in the back side of foam with 26 Gage (unit: psi) 

3.3 Results Comments of the Sandwich Panels 

 (a) The maximum deformations and stresses of the panels studied are listed in Table 3.2 
 

Table 3.2 Summary of the maximum deformation and stresses of the panels 

 
 

Gage# 

 
Maximum 
Deformatio

n(in.) 

Maximum positive stress 
(Tension) (psi) 

Maximum negative stress 
(Compression) (psi) 

Steel 
sheet 

(front) 

Steel sheet 
(back) 

PU 
foam 

Steel 
sheet 

(front) 

Steel 
sheet 
(back) 

PU 
foam 

Gage 24 0.213 11428 1466 1.784 4506 3195 13.565 
Gage 25 0.219 12040 1262 1.87 4942 3717 13.576 
Gage 26 0.227 12806 1095 1.97 5517 4436 13.587 

 
(b) For the panel of 24, 25 and 26 gage, the maximum deformation occurred at about 51'' 

from the top surface. The maximum tensile stress in longitudinal direction occurred at the bottom 

of the front steel facing, while the maximum compressive stress occurred at about 45'' from the 

top surface of the front steel facing.   
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(c) The magnitude of deformation was dependent on the modulus of elasticity of 

foam, foamE , as shown in Figure 3.21 through 3.23. 
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Figure 3.21 Maximum deformation of panel vs. modulus of elasticity of foam (24 Gage) 
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Figure 3.22 Maximum deformation of panel vs. modulus of elasticity of foam (25 Gage) 
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Figure 3.23 Maximum deformation of panel vs. modulus of elasticity of foam (26 Gage) 

3.4 Load Capability of the Basic Sandwich Panel 

    The load capabilities of the panel were determined from the following factored 

combinations: 

1.2D+1.6L+0.5(Lr or S or R)                                      (1) 

1.2D+1.6(Lr or S or R)+(0.5L or 0.8W)                      (2) 

1.2D+1.6W+0.5L +0.5( Lr or S or R)                          (3) 

Where D= dead load; L = live load due to occupancy; Lr = roof live load; S = snow load; R 

= nominal load due to initial rainwater or ice exclusive of the ponding contribution; and W = 

wind load 

The initial values of the above loads are: L =12.340 psi; Lr = 4.930 psi; S = 4.930 psi; R = 

7.400 psi; and W = 0.136 psi 

3.4.1 Vertical load capability of the basic panels 

Vertical load capability of the panels was determined based on load combination (2) - 

1.2D+1.6R+0.8W. The dead load and wind load remained unchanged in the analysis; the only 
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variable was the vertical rain load.  The maximum vertical load was controlled by the allowable 

compressive stresses in the foam. 

Table 3.3 Vertical load capability (Rain load) of the basic panel 

Steel 
thickness 

 
R(psi) 

 

Stress in foam(psi) Stress in steel (ksi) 
Maximum 

positive 
stress 

(Tension) 

Maximum 
negative stress 
(Compression) 

Maximum 
positive 
stress 

(Tension) 

Maximum 
negative stress 
(Compression) 

24 Gage 40.58 5.136 50.990 5.98 9.43 
25 Gage 40.54 5.037 50.988 6.027 9.22 
26 Gage 40.51 4.943 50.997 6.037 9.349 

    Note:   1. psiFfoam 516085.0 =×=φ ; ksiFsteel 05.283385.0 =×=φ  
                2. Dead load and wind load are constants. 

3.4.2 Wind load capability of the basic panels 

Wind load capability of the panels was determined based on load combination (3) - 

1.2D+1.6W+0.5L+0.5S. In this analysis, the dead load, live load and roof live load were constant.  

The only variable was wind load.  The wind load capacity was controlled by the allowable steel 

tensile stress. 

Table 3.4 Horizontal load capability (Wind load) of the basic panel 

Steel 
thickness 

 
 
W(psi) 

Stress in foam(psi) Stress in steel(ksi) 
Maximum 

positive stress 
(Tension) 

Maximum 
negative stress 
(Compression) 

Maximum 
positive stress 

(Tension) 

Maximum 
negative stress 
(Compression) 

24 Gage 0.1919 4.142 6.784 28.046 8.262 
25 Gage 0.182   4.126 6.788 28.050 8.544 
26 Gage 0.1711 4.098 6.792 28.048 8.916 

     Note:   1. psiFfoam 516085.0 =×=φ ; ksiFsteel 05.283385.0 =×=φ  
                 2. Dead load, live load and snow load are constants. 

3.4.3 Deflection capability of the basic panels  

Deflection capability of the panels was determined based on service load combination  
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D+W+L+S (or Lr). Except for the wind load, all of the other loads were kept as constants. The 

maximum deformation was limited to a common accepted requirement for buildings (AISC 

LRFD Specifications).  Under the maximum deformation, the tensile stress in steel facing was 

very close to the allowable stress. 

Table 3.5 Deformation vs. wind load (W) of the basic panel 

Steel 
thickness 

 
 

W 
(psi) 

 
Maximum 

deformation 
(inches) 

Stress in foam (psi) Stress in steel (ksi) 
Maximum  
positive 
stress 

(Tension) 

Maximum  
negative  

stress 
(Compression) 

Maximum 
positive 
stress 

(Tension) 

Maximum 
negative  

stress 
(Compression) 

24 Gage 0.286 0.450 3.825 13.566 25.462 8.269 
25 Gage 0.278 0.449  3.901 13.576 26.035 8.797 
26 Gage 0.268 0.449 3.968 13.587 26.655 9.458 

Note:   1. psiFfoam 516085.0 =×=φ ; ksiFsteel 05.283385.0 =×=φ  
            2. Dead load, live load and snow load are constants. 
           3. The limitation of panel deformation was L/240=0.45 inch. 
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CHAPTER 4  

MODELING AND ANALYSIS OF C-SHAPE COLUMNS 

Three System columns of various cross-sections were studied for column performance.  The 

three sections were C-shape profile, Delta-shape and original columns. In the Delta-shape column, 

both welded and non-welded cross sections were considered in the analysis. There were two sizes of 

the C-shape profiles – 2 × 4 channel (3.5 inch web) and 2 × 6 channel (5.5 inch web). In addition, 

various steel facing gages for all profiles were considered as described in chapter 2.  This chapter 

presents the study on C-shape profiles. 

4.1 Description of Input and Modeling of the C-shape Profiles 

4.1.1 Dimensions and modeling of the C-shape profiles 

 
 (a) 2×4                                  (b) 2×6 

Figure 4.1 Cross-section of C-shape profile (unit: inches) 
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(a) Column with 2X4 C-shape

(b) Column with 2X6 C-shape
  

Figure 4.2 Modeling of C-shape profile 

4.1.2 Finite element model of column with C-shape Profile 

Shell elements (Shell181) were used to model the C-shape profile. Figure 4.3 shows the three-

dimensional view of the C-shape column model. The model was restrained with pin supports at the 

top of the column and fix supports at the bottom except the rotation about Y direction, as shown in 

Figure. 4.4 

 
Figure 4.3 The 3-D C-shape profile model 
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Figure 4.4 Model of the C-shape profile with end restrains 

4.1.3 Loads 

Table 4.1 Loading on the C-shape profiles 

Gage # Dead load 
( lbs) 

Live load 
(lb/in) 

Wind load(psi) 
Case 1 Case 2 

Gage 16 2×4 12.13 192.022 0.136 2.176 
2×6 15.80 147.495 0.136 2.176 

Gage 20 2×4 7.28 192.022 ---- --- 
2×6 9.48 147.495 --- --- 

     Note:  
1. Case 1 denotes columns carry the wind load based on the profile area only; 
2. Case 2 denotes columns carry the wind load based on 24 in wide tributary area. 

 
Figure 4.5 was an example of the C-shape profile with loads. It was assumed that the profile 

resists wind load on its flange. 
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Figure 4.5 Loads on the C-shape profile 

(Positive values denote the pressure act into the areas) 
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4.2 Analytical Results of the C-shape Profile 

4.2.1 Deformation 

Figures 4.6 through 4.9 show the deformation summations of C-shape profiles with 16 gage 

and 20 gage under the load Case 1.  A large rotation was observed in the C-shape profiles when 

they were under loading.  To show the rotation deformation, the column was cut at different 

longitudinal positions along the column.  Figures 4.10 through 4.13 show the cross-sectional 

rotation of C-shape profiles with 16 gage and 20 gage under load Case 1.  Similarly, Figures 4.14 

and 4.15 show the deformation summations of the C-shape profiles with 16 gage under load Case 2 

and Figures 4.16 through 4.17 shows the cross-sectional rotation of the columns under the same 

load case.   

4.2.1.1 Deformation of C-shape profile under the load Case 1 

 
Figure 4.6 Deformation of C2×4 C-shape profile with 16 Gage (unit: inches) 
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Figure 4.7 Deformation of C2×6 C-shape profile with 16 Gage (unit: inches) 

 
Figure 4.8 Deformation of C2×4 C-shape profile with 20 Gage (unit: inches) 
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Figure 4.9 Deformation of C2×6 C-shape profile with 20 Gage (unit: inches) 
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4.2.1.2 Rotation of C-shape column under the load Case 1 

 
     (a) Cross-section view (Z=0.0 in.)                     (b)  Cross-section view (Z=20.0 in.)              (c)  Cross-section view (Z=30.0 in.) 
 

 
 
          (d)  Cross-section view (Z=54.0 in.)            (e) Cross-section view (Z=90.0 in.)                     (f) Cross-section view (Z=108.0 in.)           
 

Figure 4.10 Cross-section view of C-shape 16 Gage (C2×4) 
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     (a) Cross-section view (Z=0.0 in.)                     (b)  Cross-section view (Z=20.0 in.)              (c)  Cross-section view (Z=30.0 in.) 

 
        (d)  Cross-section view (Z=54.0 in.)            (e) Cross-section view (Z=90.0 in.)                     (f) Cross-section view (Z=108.0 in)           
 

Figure 4.11 Cross-section view of C- shape 16 Gage (C2×6) 
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   (a) Cross-section view (Z=0.0 in.)                     (b)  Cross-section view (Z=20.0 in.)              (c)  Cross-section view (Z=30.0 in.) 
 

 
        (d)  Cross-section view (Z=54.0 in.)            (e) Cross-section view (Z=90.0 in.)                     (f) Cross-section view (Z=108.0 in) 

 

Figure 4.12 Cross-section view of C- shape 20 Gage (C2×4) 
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   (a) Cross-section view (Z=0.0 in.)                     (b)  Cross-section view (Z=20.0 in.)              (c)  Cross-section view (Z=30.0 in.) 
 

 
      (d)  Cross-section view (Z=54.0 in.)            (e) Cross-section view (Z=90.0 in.)                     (f) Cross-section view (Z=108.0 in) 

 

Figure 4.13 Cross-section view of C- shape 20 Gage (C2×6) 
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4.2.1.3 Deformation of C-shape column under the load Case 2 

 
Figure 4.14 Deformation of C2×4 C-shape profile with 16 Gage (unit: inches) 

 
Figure 4.15 Deformation of C 2×6 C-shape profile with 16 Gage (unit: inches) 
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4.2.1.4 Rotation of C-shape column under the load Case 2 

 
   (a) Cross-section view (Z=0.0 in.)                     (b)  Cross-section view (Z=20.0 in.)              (c)  Cross-section view (Z=30.0 in.) 
 

 
      (d)  Cross-section view (Z=54.0 in.)            (e) Cross-section view (Z=90.0 in.)                     (f) Cross-section view (Z=108.0 in) 
 

Figure 4.16 Cross-section view of C-shape 16 Gage (C2×4) 
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   (a) Cross-section view (Z=0.0 in.)                     (b)  Cross-section view (Z=20.0 in.)              (c)  Cross-section view (Z=30.0 in.) 
 

 
 
      (d)  Cross-section view (Z=54.0 in.)            (e) Cross-section view (Z=90.0 in.)                     (f) Cross-section view (Z=108.0 in)           
 

Figure 4.17 Cross-section view of C- shape 16 Gage (C2×6) 
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It was observed that the maximum deformation of the C-shape profiles increased as the 

thickness of the steel decreased. For example, the maximum deformation of the 2×4 C-shape 

profile increased from 0.0678 in to 0.142 in when steel thickness changed from 16 gage to 20 

gage. For the same steel thickness, the maximum deformation of the C-shape profiles decreased 

as the height of the channel-web increased. For example, the maximum deformation of the C-shape 

profile with 16 gage thickness varied from 0.0678 in. to 0.033 in. when the height of the web 

increased from 3.5 in. to 5.5 in. 

The maximum rotations of the C-shape profiles follow the same trend as the maximum 

deformation: increased as the thickness of the steel decreased and decreased as height of the web 

increased. For example, the maximum rotation of the 2×6 C-shape profile varied from 0.0097 rad 

to 0.0202 rad when the steel thickness changed from 16 gage to 20 gage; For the same thickness 

of the steel, the maximum rotation of the C-shape profile made of 20 gage steel decreased from 

0.0503 rad to 0.0202 rad when the height of the web increased from 3.5 in. to 5.5 in. 

4.2.2 Stresses of the C-shape profiles 

Figures 4.18 through 4.25 show the stresses in longitudinal direction of the C-shape 

profiles made of 16 Gage and 20 Gage steel under the load Case 1. Figures 4.26 through 4.29 

show the stresses in longitudinal direction of C-shape profile made of 16 Gage steel under the 

load Case 2. The figures present the stresses in the front side and back side of each profile with 

deformed shape. 
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4.2.2.1 Stresses in longitudinal direction of C-shape profile under the load Case 1 

 
 

Figure 4.18 Stresses in the back side of C2×4 profile with 16 Gage (units: psi) 

 
Figure 4.19 Stresses in the front side of C2×4 profile with 16 Gage (units: psi) 
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Figure 4.20 Stresses in the back side of C2×6 profile with 16 Gage (units: psi) 

 
Figure 4.21 Stresses in the front side of C2×6 profile with 16 Gage (units: psi) 
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Figure 4.22 Stresses in the back side of C2×4 profile with 20 Gage (units: psi) 

 
Figure 4.23 Stresses in the front side of C2×4 profile with 20 Gage (units: psi) 
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Figure 4.24 Stresses in the back side of C2×6 profile with 20 Gage (units: psi) 

 
Figure 4.25 Stresses in the front side of C2×6 profile with 20 Gage (units: psi) 
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4.2.2.2 Stresses in longitudinal direction of C-shape profile under the load Case 2 

 
Figure 4.26 Stresses in the back side of C2×4 profile with 16 Gage (units: psi) 

 
Figure 4.27 Stresses in the front side of C2×4 profile with 16 Gage (units: psi) 
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Figure 4.28 Stresses in the back side of C2×6 profile with 16 Gage (units: psi) 

 
Figure 4.29 Stresses in the front side of C2×6 profile with 16 Gage (units: psi) 
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The maximum stresses of the C-shape profiles increased as thickness of the steel decreased, 

while the maximum stresses of the profiles decreased as the height of channel-web increased. 

For example, the maximum stresses of the 2×4 C-shape profile decreased from 6132 psi to 4492 

psi when the steel thickness changed from 16 gage to 20 gage. For the same steel thickness, the 

maximum stresses of the C-shape profile made of 16 gage steel varied from 6132 psi to 4492 psi 

when the height of the web increased from 3.5 in. to 5.5 in. 

4.3 Load Capability of the C-shape Profile under the load Case 1 

The load capabilities of the C-shape profiles were determined from the following factored 

combinations: 

1.2D+1.6L+0.5(Lr or S or R)                                      (1) 

1.2D+1.6(Lr or S or R)+(0.5L or 0.8W)                      (2) 

1.2D+1.6W+0.5L +0.5( Lr or S or R)                          (3) 

Where D = dead load; L = live load due to occupancy; Lr = roof live load; S = snow load; 

R = nominal load due to initial rainwater or ice exclusive of the ponding contribution; and W = 

wind load 

The initial values of the above loads are: L =12.340 psi; Lr = 4.930 psi; S = 4.930 psi; R = 

7.400 psi; and W = 0.136 psi 
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4.3.1 Vertical load capability of the C-shape profile 

Vertical load capability of the C-shape profile can be determined from combination (2): 

1.2D+1.6R+0.8W 
 

Table 4.2 Vertical load capability (Rain load) of the C-shape profile 

Gage # 
 

Profile 
 

R(psi) 
 

Stress in steel (ksi) 
Maximum positive 

stress (Tension) 
Maximum negative stress 
(Compression) 

Gage 16 2×4 75.85 ----- 28.044 
2×6 100.3 ----- 28.015 

Gage 20 2×4 44.09 ----- 28.022 
2×6 57.8 ----- 28.027 

        Note:   1. ksiFsteel 05.283385.0 =×=φ  
                    2. Dead load and wind load are constants. 

4.3.2 Wind load capability of the C-shape profile 

Wind load capability of the C-shape profile can be determined from combination (3): 

1.2D+1.6W+0.5L+0.5S 
 

Table 4.3 Horizontal load capability (Wind load) of the C-shape profile 

Gage # Profile W(psi) 
Maximum 

deformation 
(inches) 

Stress in steel (ksi) 
Maximum positive 

stress (Tension) 
Maximum negative 

stress (Compression) 

Gage 16 2×4 0.860 0.6823 20.112 28.043 
2×6 1.228 0.4757 17.753 28.035 

Gage 20 2×4 0.392 0.6538 15.845 28.031 
2×6 0.571 0.4261 13.078 28.049 

Note:   1. ksiFsteel 05.283385.0 =×=φ  
            2. Dead load, live load and snow load are constants. 
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4.3.3 Wind capability of the C-shape profile based on deflection limitation 

Deflection capability of the C-shape profile can be determined from combination: 

D+W+L+S (or Lr) 

 
Table 4.4 Deformation vs. wind load (W) of the C-shape profile 

Gage # Profile W(psi) 
Maximum 

deformation 
(inches) 

Stress in steel (ksi) 
Maximum positive 

stress (Tension) 
Maximum negative 

stress (Compression) 

Gage 16 2×4 0.604 0.30 6.078 15.060 
2×6 1.22 0.30 9.177 19.216 

Gage 20 2×4 0.283 0.30 2.784 17.038 
2×6 0.638 0.30 6.393 22.338 

Note:   1. ksiFsteel 05.283385.0 =×=φ  
            2. Dead load, live load and snow load are constants. 
           3. The limitation of C-shape deformation was L/360=0.3 inch. 
 

The capacities of the C-shape profiles under the load Case 2 were not studied herein 

because C-shape profiles under the normal loads were unacceptable (AISC LRFD 

Specifications). 
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CHAPTER 5 

MODELING AND ANALYSIS OF DELTA-SHAPE COLUMNS 

5.1 Description of Input and Modeling of Delta-shape Columns 

Delta-shaped column was developed recently by Dr. Jan Kosny at ORNL.  The column 

has a larger stiffness in the cross section.  The Delta-shaped column could be made with welds at 

joint or without welds at joint.  This chapter presents the results for both welded and unwelded 

conditions.  

5.1.1 Dimensions and modeling of the Delta-shape column 

Figure 5.1 shows the typical cross-section of the Delta-shaped column. 
 

 
Figure 5.1 Cross-section of the Delta-shape column (unit: inches) 
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5.1.2 Finite element model of the Delta-shape column 

 
Shell elements (Shell181) were used to model the Delta-shape column. Figure 5.2 shows 

the elevation of the Delta-shape column model.  The column was divided into 54 – 2 inches 

elements in height.  Figure 5.3 shows the three-dimensional view of the Delta-shape column 

model. The model was restrained with pin supports at the top of the column and fix supports at 

the bottom except the rotation about X direction, as shown in Figure. 5.4.  

 

Figure 5.2 Elevation of the Delta-shape column 
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Figure 5.3 3-D Delta-shape column model 

 
Figure 5.4 Delta-shape column model with end restraints 
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5.1.3 Loads 

Table 5.1 Applied load of the Delta-shape columns 

Gage # Dead load 
( lbs) 

Live load 
(lb/in) 

Wind load (psi) 
Case 1 Case 2 

Gage 16 43.962 79.503 0.1360 1.3989 
Gage 18 35.14 79.503 0.1360 1.3989 
Gage 20 26.392 79.503 0.1360 1.3989 

   Note:  
1. Case 1 denotes columns carry the wind load based on column area only; 
2. Case 2 denotes columns carry the wind load based on 36 in wide tributary area. 

 
Figure 5.5 was an example of the Delta-shape column with loads. It was assumed that the 

column will resist wind load on its front side. 

 
 

Figure 5.5 Loads on the column with Delta-shape 

(Positive values denote the pressure act into the areas)
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5.2 Analytical Results of the Delta-shape Column 

5.2.1 Deformation 

Figures 5.6 through 5.8 show the deformation of Delta-shape columns with Gage 16, 18 and 

Gage 20 under the load Case 1. Figures 5.9 through 5.11 show the deformation of Delta-shape 

column with Gage 16, 18 and Gage 20 under the load Case 2.   

5.2.1.1 Deformation of Delta-shape column under the load Case 1 

 
Figure 5.6 Deformation of the Delta-shape column with 16 Gage (unit: inches) 
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Figure 5.7 Deformation of the Delta-shape column with 18 Gage (unit: inches) 

 
Figure 5.8 Deformation of the Delta-shape column with 20 Gage (unit: inches) 
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5.2.1.2 Deformation of Delta-shape column under the load Case 2 

 
Figure 5.9 Deformation of the Delta-shape column with 16 Gage (unit: inches) 

 

 
Figure 5.10 Deformation of the Delta-shape column with 18 Gage (unit: inches) 
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Figure 5.11 Deformation of the Delta-shape column with 20 Gage (unit: inches) 

The Delta-shape column clearly had a strong axis and weak axis in the cross-section.  The 

deformation occurred predominantly in the lateral direction, or about the weak axis. Little twisting 

was observed for all of the column dimensions and load cases studied.  The maximum deformation 

of the Delta columns increased as thickness of steel decreased. For example, the maximum 

deformation of the Delta columns increased from 0.02317 in. to 0.0430 in. as the steel thickness 

changed from 16 gage to 20 gage. Under load Case 2, due to a larger lateral deformation of column, 

the deformation limit L/360 was the controlling criteria. 

5.2.2 Stresses of the Delta-shape columns 

Figures 5.12 through 5.17 show the stresses of Delta-shape columns made of 16, 18 and 20 

gage steel under the load Case 1. Figures 5.18 through 5.23 show the stresses of Delta-shape 

column made of 16, 18 and 20 gage steel under the load Case 2.   
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5.2.2.1 Stresses in longitudinal direction of Delta-shape column under load Case 1 

 
Figure 5.12 Stresses in the back side of the delta-shape column with 16 Gage (unit: psi) 

 
Figure 5.13 Stresses in the front side of the delta-shape column with 16 Gage (unit: psi) 
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Figure 5.14 Stresses in the back side of the delta-shape column with 18 Gage (unit: psi) 

 
Figure 5.15 Stresses in the front side of the delta-shape column with 18 Gage (unit: psi) 
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Figure 5.16 Stresses in the back side of the delta-shape column with 20 Gage (unit: psi) 

 
Figure 5.17 Stresses in the front side of the delta-shape column with 20 Gage (unit: psi) 
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5.2.2.2 Stresses in longitudinal direction of Delta-shape column under load Case 2 

 
Figure 5.18 Stresses in the back side of the delta-shape column with 16 Gage (unit: psi) 

 
Figure 5.19 Stresses in the front side of the delta-shape column with 16 Gage (unit: psi) 
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Figure 5.20 Stresses in the back side of the delta-shape column with 18 Gage (unit: psi) 

 
Figure 5.21 Stresses in the front side of the delta-shape column with 18 Gage (unit: psi) 
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Figure 5.22 Stresses in the back side of the delta-shape column with 20 Gage (unit: psi) 

 
Figure 5.23 Stresses in the front side of the delta-shape column with 20 Gage (unit: psi) 
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The maximum longitudinal stress of the Delta-shape columns occurred at the bottom of the 

column.  The stress at the mid-height of the column, the larger deformation location, was also 

relative high. Tensile was not observed in all the studied Delta-shape columns under load Case 1, 

which was the same as the C-shape columns. As the thickness of the steel decreased, the stresses in 

the columns increased. For example, the maximum stresses of the Delta-shape columns increased 

from 2,401 psi to 4,140 psi as the steel thickness changed from 16 to 20 gages under load Case 1. 

The stresses in the columns under load Case 2 exhibited the same trends. 

5.3 Load Capability of the Delta-shape Column  

The load capabilities of the Delta-shape columns were determined based on the factored 

load combinations. Wind load (W) equals 0.136 psi in the load Case 1, and increases to 1.399 psi 

in load Case 2, which was described in Section 2.3.2. 

5.3.1 Load Capability of the Delta-shape Column under the load Case 1 

5.3.1.1 Vertical load capability of the Delta-shape column 

 Vertical load capability of the Delta-shape column can be determined from combination (2): 

1.2D+1.6R+0.8W 

 
Table 5.2 Vertical load capability (Rain load) of the Delta-shape column 

Steel 
thickness 

 
R (psi) 

 

Stress in steel (ksi) 
Maximum positive 

stress (Tension) 
Maximum negative stress 
(Compression) 

16 Gage 218.2 ----- 28.033 
18 Gage 173.0 ----- 28.045 
20 Gage 127.9 ----- 28.040 

   Note:  1. ksiFsteel 05.283385.0 =×=φ  
                          2. Dead load and wind load are constants. 
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5.3.1.2 Wind load capability of the Delta-shape column 

Wind load capability of the Delta-shape column can be determined from combination (3): 

1.2D+1.6W+0.5L+0.5S 
 

Table 5.3 Horizontal load capability (Wind load) of the Delta-shape column  

Steel 
thickness W(psi) 

Maximum 
deformation 

(inches) 

Stress in steel (ksi) 
Maximum positive 

stress (Tension) 
Maximum negative 

stress (Compression) 
16 Gage 2.21 0.597 28.039 27.506 
18 Gage 1.72 0.606 27.497 27.948 
20 Gage 1.21 0.610 26.008 27.956 
Note:  1. ksiFsteel 05.283385.0 =×=φ  

                       2. Dead load, live load and snow load are constants. 
5.3.1.3 Deflection capability of the Delta-shape column  

Deflection capability of the Delta-shape column can be determined from combination: 

D+W+L+S (or Lr) 

 
Table 5.4 Deformation vs. wind load (W) of the Delta-shape column 

Steel 
thickness W(psi) 

Maximum 
deformation 

(inches) 

Stress in steel(ksi) 
Maximum positive 

stress (Tension) 
Maximum negative 

stress (Compression) 
16 Gage 1.77 0.30 13.015 14.808 
18 Gage 1.36 0.299 12.284 15.084 
20 Gage 0.96 0.300 11.098 15.475 
Note:  1. ksiFsteel 05.283385.0 =×=φ  

                       2. Dead load, live load and snow load are constants. 
                      3. The limitation of Delta-shape deformation was L/360=0.3 inch. 

5.3.2 Vertical Load Capability of the Delta-shape Column under the load Case 2 

Vertical load capability of the Delta-shape column can be determined from combination (2): 
1.2D+1.6R+0.8W 
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Table 5.5 Vertical load capability (Rain load) of the Delta-shape column 

Steel 
thickness 

 
R(psi) 

 

Stress in steel (ksi) 
Maximum positive 

stress (Tension) 
Maximum negative stress 
(Compression) 

16 Gage 157.4         ----- 28.044 
18 Gage 109.7         ---- 28.050 

        Note:   1. ksiFsteel 05.283385.0 =×=φ , 2. Dead load and wind load are constants. 
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CHAPTER 6 

MODELING AND ANALYSIS OF THE ORIGINAL-SHAPE COLUMN  

6.1 Description of Input and Modeling of the Original Column without foam 

6.1.1 Dimensions and modeling of the original column without foam 

 
Figure 6.1 Cross-section of the original-shape column (unit: inches) 

 
Figure 6.2 Elevation of the original column 
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6.1.2 Finite element model of the original column 

Shell elements (Shell181) were used to model the Original. Figure 6.3 shows the three-

dimensional view of the Original column model. The model was restrained with pin supports at 

the top of the column and fix supports at the bottom except the rotation about X direction, as 

shown in Figure. 6.4. 

 
Figure 6.3 3-D original column model 

 
Figure 6.4 Original column model with end restraints 
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6.1.3 Loads 

Table 6.1 Applied load of the original columns 

Steel 
thickness 

Dead load 
( lbs) 

Live load 
(lb/in) 

Wind load (psi) 
Case 1 Case 2 

16 Gage 23.730 147.285 0.136 1.579 
18 Gage 18.968 147.285 0.136 ---- 
20 Gage 14.246 147.285 0.136 ---- 

       Note:  
1. Case 1 denotes columns carry the wind load based on column area only; 
2. Case 2 denotes columns carry the wind load based on 36 in wide tributary area. 

 
Figure 6.5 is an example of the Delta-shape column with loads. It was assumed that the 

column would resist wind load on its front side. 

 
Figure 6.5 Loads on the original column 

(Positive values denote the pressure act into the areas)
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6.2 Analytical Results of the Original Column without Foam 

6.2.1 Deformation 

Figures 6.6 through 6.8 show the deformation of the original columns with Gage 16, 18 and 

Gage 20 under the load Case 1. Figures 6.9 show the deformation of the original column with Gage 

16 under the load Case 2.   

6.2.1.1 Deformation of original column under the load Case 1 

 
Figure 6.6 Deformation of the original column with 16 Gage (unit: inches) 
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Figure 6.7 Deformation of the original column with 18 Gage (unit: inches) 

 
Figure 6.8 Deformation of the original column with 20 Gage (unit: inches) 
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6.2.1.2 Deformation of original column under the load Case 2 

 
Figure 6.9 Deformation of the original column with 16 Gage (unit: inches) 

No twisting was observing in the deformation of all original columns, which was the same 

as the Delta-columns. The maximum deformations of all original columns occurred at about 46'' 

from the top surface. The maximum deformation of the original columns increased as the thickness 

of the steel facing decreased. For example, the maximum deformation of the original columns 

increased from 0.129 in. to 0.215 in. as the steel thickness changed from 16 gage to 20 gage. As 

far as the maximum deformations under load Case 1, all original columns can be acceptable, but 

the slenderness ratios of all original columns were around 284, which was greater than the limit 

of the code (AISC LRFD Specifications). 

The lateral deformation of original columns made of 16 gage steel were very larger than the 

limit of L/360 when columns were subjected to wind load based on 36 in wide tributary area. 

(The limitation of Delta deformation is L/360=0.3 inch). 
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Compared to the C-shape column and Delta-shape column with the same steel thickness 

under the same load, the maximum deformation of the original column was the largest. For 

example, the maximum deformation of the Delta column made of 16 gage steel was 0.0232 inch, 

while the maximum deformation of the original 16 gage column was 0.1291 inch under load 

Case 1. 

6.2.2 Stresses of the original columns 

Figures 6.10 through 6.15 show the stresses of original columns made of 16, 18 and 20 gage 

steel under the load Case 1. Figures 6.16 through 6.17 show the stresses of the original column with 

Gage16 under the load Case 2.   

 
6.2.2.1 Stresses in longitudinal direction of original column under load Case 1 

 
Figure 6.10 Stresses in the back side of the Original column with 16 Gage (unit: inches) 
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Figure 6.11 Stresses in the front side of the Original column with 16 Gage (unit: inches) 

 
Figure 6.12 Stresses in the back side of the Original column with 18 Gage (unit: inches) 
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Figure 6.13 Stresses in the front side of the Original column with 18 Gage (unit: inches) 

 

 
Figure 6.14 Stresses in the back side of the Original column with 20 Gage (unit: inches) 
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Figure 6.15 Stresses in the front side of the Original column with 20 Gage (unit: inches)  

In the longitudinal direction, the maximum compressive stresses and tensile stresses of all 

the original columns occurred at the bottom of the columns under load Case 1. In addition, the 

stresses of the columns at the upper positions were relative high. The stresses of the original 

columns increased as the thickness of the steel decreased. For example, the maximum stresses of 

the original columns increased from 6759 psi to 11217 psi as the steel thickness changed from 16 

gage to 20 gage under load Case 1.  

The maximum stress of the original column was larger than the stresses of the C-shape and 

Delta-shape columns with the same steel thickness and under the same loads. For example, the 

maximum stress of the Delta column made of 16 gage steel was 2401psi, while the maximum 

stress of the original column made of 16 gage steel was 6759 psi under load Case 1. 
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6.2.2.2 Stresses in longitudinal direction of original column under load Case 2 

 
Figure 6.16 Stresses in the back side of the Original column with 16 Gage (unit: inches) 

 
Figure 6.17 Stresses in the front side of the Original column with 16 Gage (unit: inches) 
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The stresses in the columns under load Case 2 exhibited the same trends as the ones under 

load Case 1. The stresses of the original column made of 16 gage steel were too large to satisfy 

the deformation limitation when the column subjected to wind load based on 36 in wide tributary 

area. Compared to the maximum stresses of the maximum stress of the original column was 

larger than the stresses of the C-shape and Delta-shape columns with same steel thickness under 

the same loads. For example, the maximum stress of the Delta column made of 16 gage steel was 

2401 psi, while the maximum stress of the original column made of 16 gage steel was 6759 psi 

under load Case 1. 

6.3 Description of Input and Modeling of the Original Column with foam 

6.3.1 Dimensions and modeling of the original column with foam 

The original column with foam made of 16 gage steel under Case 1 was studied. 

 
Figure 6.18 Cross-section of the original column with foam (unit: inches) 



 

87 

 
Figure 6.19 Elevation of the original column with foam  

6.3.2 Finite element model of the original column with foam 

Shell elements (Shell181) are used to model the metal facings and solid elements (Solid45) 

are used to model the foam between the facings. As shown in Figure 6.21, the model is restrained 

with pin supports at the top of the column and fix supports at the bottom except the rotation 

about x direction. 
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Figure 6.20 Original column model with foam 

   
Figure 6.21 End restrains of the original column with foam   



 

89 

6.3.3 Loads 

Dead load - Self-weight of the original column made of 16 gage steel with foam: 

     Foam: 2.0545 lbs 

     Steel sheets: 16.75 lbs 

Live load:  7604 =psf 52.807psi, applied on the top of the original column. 

Wind load:  19.60 =psf  0.136 psi, applied on the facing of the original column. 

 
Figure 6.22 Loads on the original column with foam 

(Positive values denote the pressure act into the areas) 
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6.4 Analytical Results of the Original Column with Foam 

6.4.1 Deformation of the original column with foam 

 
Figure 6.23 Deformation of the original column with foam (unit: inches) 
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6.4.2 Stresses of the original column with foam 

 
Figure 6.24 Stresses in the longitudinal direction at the steel facings (unit: psi) 
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Figure 6.25 Stresses in the longitudinal direction in foam (unit: psi) 

6.4.3 Results comments of the original columns with foam 

   (a) The maximum deformation in the system column occurs at about 46.5'' from the top 

surface.  

   (b) For the stresses in longitudinal direction, the maximum compressive stress occurs at 3'' 

from the top of the front steel facing and the maximum tensile stress occurs at about 1.5'' from 

the bottom surface of the middle steel facing.  The maximum tensile and compressive stresses in 

the PU foam are 2.294 psi and 49.22 psi, respectively. 
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Table 6.2 Summary of the maximum stresses in the original column with foam 

Element Maximum tensile 
stress (psi) 

Maximum compressive 
stress (psi) 

Steel sheet (front) 1426 5711 
Steel sheet (middle) 2556 3187 
Steel sheet (back)             1242                  4207 

PU foam             2.294                  49.22 
  

 (a) The stress in the PU foam was almost equal to zero compared to the stress in steel sheets; 

indicating steel facings carried most of the loads.  

  (b) The magnitude of deformation is dependent on the modulus of elasticity of foam, foamE , as 

shown in Figure 6.26 
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Figure 6.26 Maximum deformation of original column vs. modulus of elasticity of foam 
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CHAPTER 7 

MODELING AND ANALYSIS OF THE WINDOW HEADER 

7.1 Description of Input and Modeling of the window header 

7.1.1 Dimensions and modeling of the window header 

 
The material properties of the window header are same as the panel and column. The 

window header made of 16 gage steel was studied. 

 
 

Figure 7.1 Cross-section of the window header model (unit: inches) 
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Figure 7.2 Elevation of the window header model   

7.1.2 Finite element model of the window header model 

Shell elements (Shell181) were used to model the header’s metal facings and solid elements 

(Solid45) were used to model the foam between the facings. As shown in Figure 7.4, pin supports 

were applied on the ends of the bottom of the window header, and translation restraints in X and Y 

directions were applied on the top of the header at the positions of columns. 
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Figure 7.3 Window header finite element model 

 
Figure 7.4 Window header model with end restrains 
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7.1.3 Loads 

Dead load - Self-weight of the window header: 

Foam: 4.65 lbs 

Steel sheets: 26.72 lbs 

Live load:   1.164 psi, applied on the top C-shape track of the window header. 

Wind load:  19.60 psf = 0.136 psi, applied on the curved facing of the window header. 

 
Figure 7.5 Loads on the window header model  

(Positive values denote the pressure act into the areas) 
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7.2 Analytical results of the window header 

Figure 7.6 shows the deformation of the window header with Gage 16. Figures 7.7 through 

6.10 show the stresses of window header under the load Case 1.   

 
Figure 7.6 Deformation of the window header model (unit: inches) 

 
Figure 7.7 Stresses in x direction in the back steel facing y=0 (unit: psi) 
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Figure 7.8 Stresses in longitudinal direction in the front steel facing (unit: psi) 

 
Figure 7.9 Stresses in x direction in the front steel facing (unit: psi) 

 



 

101 

 
Figure 7.10 Stresses in longitudinal direction in foam (unit: psi) 

   It was observed that the maximum deformation in the window header occurred at the 

bottom of the front steel facing (y = 2.5 ft). For the stresses in longitudinal direction, the 

maximum compressive stress and the maximum tensile stress occurred at the top of the front 

steel facing.  The stress in the PU foam was almost equal to zero; indicating steel facings carried 

most of the loads.  

Table 7.1 Summary of the maximum stresses in the window header 

 
Element 

Maximum positive 
stress (Tension) 

(psi) 

Maximum negative 
stress (Compression) 

(psi) 
Steel sheets (front)            1823                3519 
Steel sheet (back)            104.68                292.15 

PU foam             0.82                 0.76 
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7.3 Capability of the Window Header 

When the wind load was kept unchanged (Wind load:  0.136 psi, applied on the shaped 

facing of the window header), the maximum vertical live load on the window header could be 

obtained based on allowable stress in steel facings. Figure 7.11 through 7.15 shows the 

deformations and stresses under the maximum live load on the window header. 

 
Figure 7.11 Deformation of the window header model (unit: inches) 
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Figure 7.12 Stresses in longitudinal direction in the back steel facing y=0 (unit: psi) 

 
Figure 7.13 Stresses in longitudinal direction in the front steel facing (unit: psi) 
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Figure 7.14 Stresses in longitudinal direction in foam (unit: psi) 

 
Under the maximum vertical load, the window header exhibited the same performance as 

the normal load case – load Case 1. The maximum deformation of the window header was 

0.0154 inch which occurred at the midsapn, bottom of the header. Under the larger vertical live 

load, the maximum stress in steel facing was 28,000 psi while the maximum stress in foam was 

only 5.797 psi, which showed the steel facings carry majority of the applied loads. The 

maximum negative stress of the window header occurred at the bottom of the front steel facings 

and close to the supports.  The maximum positive stress occurred in the steel facing at the top of 

the header. 
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CHAPTER 8 

CONCLUSION AND RECOMMENDATION 

8.1 Conclusion and recommendation about the basic panel 

1. For all the panels of metal facings made of 24, 25 and 26 gage steel studied, the 

maximum deformation occurred at about middle height of the panels. The magnitude of 

deformation decreased with the modulus of elasticity of foam increased. Under self-weight, wind 

load and live load, the maximum deformation was less than the limit of the code when the 

modulus of elasticity was 1000 psi. 

2. The maximum tensile stress in longitudinal direction occurred at the bottom of the front 

steel facing and the maximum compressive stress occurred at about 45'' from the top surface of 

the front steel facing. Under the normal loads (load Case 1), the stress of foam was much smaller 

than the stress of the steel facing, and the stress of the foam could be neglected. For example, in 

the panel made of 24 gage steel, the maximum stress of the foam was 13.565 psi while the 

maximum stress of the steel facing was 11428 psi. 

3. In determination of the vertical load capacity, the stress in the foam was a key factor for 

the maximum value of the vertical load and the stress of the steel facing did not change much. In 

pursuing the horizontal wind load capacity, the stress of the steel facing was a key factor while 

the stress of the foam could be neglected because the steel facings carried almost all the loads. 
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8.2 Conclusions and recommendations about the system column 

8.2.1 Comparison of Slenderness Ratio  

The slenderness ratio was an important term for columns behavior. According to the AISC 

LRFD Specifications, Article B7, the slenderness ratio of a compression member, KL/r, should 

not exceed 200. The calculations of the slenderness ratio of all columns are shown in the 

following. 

Table 8.1 Comparison of Slenderness Ratio for the Studied columns 

 
C-shape column Delta-shape column Original column 

16G- 
C2×4 

16G- 
C2×6 

20G- 
C2×4 

20G- 
C2×6 16G 18G 20G 16G 18G 20G 

A (in2) 0.3919 0.5086 0.2353 0.3071 1.4352 1.1472 0.8616 0.5894 0.4711 0.3538 

I (in4) 0.7598 2.1565 0.4561 1.3143 0.603 0.4819 0.3619 0.085 0.0679 0.051 

r (in.) 1.3924 2.059 1.3923 2.069 0.6482 0.6481 0.6480 0.3798 0.3796 0.38 

L (in.) 108.0 108.0 108.0 108.0 108.0 108.0 108.0 108.0 108.0 108.0 

KL/r 77.56 52.5 77.6 52.2 166.61 166.64 166.67 284.4 284.5 284.2 

Note:    
1. I is the least moment of inertia of the column section; 

2. 
A

I
r 33= . 

 
According to Table 8.1, the slenderness ratios of the C-shape and Delta-shape columns were less 

than the limitation of slenderness ratio 200, while the slenderness ratios of the original columns 

were greater than the limit. 
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8.2.2 Comparison of deformations and stresses for columns under load Case 1 

Table 8.2 Deformations and Stresses of the Studied Columns under Load Case 1 

Steel 
thickness Column 

Maximum 
Deflection 

(in.) 

Maximum 
Rotation 

(rad.) 

Maximum 
positive 
stress 

(Tension) 
(psi) 

Maximum 
negative stress 
(Compression) 

(psi) 

Slenderness 
ratio 

(KL/r) 

Check 
Code 

16 Gage  

2 × 4 
C-shape 0.0678 0.0232 --- 6132 77.56 OK 

2 × 6 
C-shape 0.0335 0.0097 --- 4492 52.5 OK 

20 Gage 

2 × 4 
C-shape 0.1424 0.0503 --- 11,130 77.6 OK 

2 × 6 
C-shape 0.0644 0.0202 --- 8108 52.2 OK 

 
16 Gage  

 

Delta-
shape 0.0232 0 --- 2401 166.61 OK 

18 Gage  Delta-
shape 0.0302 0 --- 3042 166.64 OK 

 
20 Gage  

 

Delta-
shape 0.0430 0 --- 4140 166.67 OK 

 
16 Gage  

 

Original 
column 0.1291 0 522.701 6759 284.4 NG 

18 Gage  Original 
column 0.1616 0 609.441 8439 284.5 NG 

 
20 Gage  

 

Original 
column 0.2153 0 751.432 11,217 284.2 NG 

Note:    
1. Limitations: 
           a. The limitation of steel stress .05.283385.0 ksiFsteel =×=φ  
           b. The limitation of panel deformation is L/360=0.30 inch. 
           c. The limitation of slenderness ratio is 200. 
 2. The underlined values are unacceptable compared with the above limitations. 
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8.2.3 Comparison of deformations and stresses for columns under load Case 2 

Table 8.3 Deformations and Stresses of the Studied Columns under Load Case 2 

Steel 
thickness Column 

Maximum 
Deflection 

(in.) 

Maximum 
Rotation 

(rad.) 

Maximum 
positive 
stress 

(Tension) 
(psi) 

Maximum 
negative stress 
(Compression) 

(psi) 

Slenderness 
ratio 

(KL/r) 

Check 
Code 

16 Gage  

2 × 4 
C-shape 1.079 0.370 31.102 45.051 77.56 NG 

2 × 6 
C-shape 0.529 0.156 19.16 32.216 52.5 NG 

 
16 Gage  

 

Delta-
shape 0.2367 0 10,002 11,990 166.61 OK 

18 Gage  Delta-
shape 0.3083 0 12,685 15,466 166.64 OK 

 
20 Gage  

 

Delta-
shape 0.4402 0 17,328 21,619 166.67 NG 

 
16 Gage  

 

Original 
column 1.497 0 31,999 52,937 284.4 NG 

Note:    
 1. Limitations: 
           a. The limitation of steel stress ksiFsteel 05.283385.0 =×=φ . 
           b. The limitation of panel deformation is L/360=0.30 inch. 
           c. The limitation of slenderness ratio is 200. 
 2. The underlined values are unacceptable compared with the above limitations. 

8.2.4 Conclusion from analysis of system columns 

Based on the analytical results, following conclusions were drawn: 

1. Twist or torsional deformation could be clearly observed in the C-shape columns under 

loading due to the asymmetry about the weak axis in the cross-section. The delta-shape and 

original columns exhibited flexural buckling deformation only. The maximum deformations of 
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delta-shape and original columns occurred at about 45'' - 46'' from the top surfaces of the 

columns.  

2. The maximum compression of all the columns occurred at the bottom of the columns 

under load Case 1 and Case 2. Under load Case 1, the maximum tensile of the original column 

occurred at the bottom of the columns, and no tensile occurred at the C-shape and Delta-shape 

columns. The maximum tensile stresses of all the columns occurred at the bottom of the columns 

under load Case 2. 

3. The stresses, deformations and slenderness ratios in C-channel columns and Delta 

columns were acceptable when columns were subjected to wind load based on column area only 

(load Case 1). The slenderness ratio of original columns was unacceptable. 

4. Only Delta columns made of 16 and 18 gage steel met all of the design criteria when the 

columns subjected to wind load based on 36 in wide tributary area (24 in. for C-shape column). 

For columns with the same Gage and under the same loads, Delta column had the smallest stress 

and original column had the largest stress.  

Considering the deformation, slenderness ratio and stresses of the columns, Delta-columns 

made of 16 and 18 gage steel were the best choice among the columns studied in this project. 

8.3 Conclusions on the window header 

For the stresses in the longitudinal direction of the window header, the maximum tensile 

and compressive stresses occurred at the bottom of the front steel facing.  The maximum 

compressive stress in the PU foam were almost zero, indicating the steel facings carried almost 

all of the loads on the window header. Even under the larger vertical live load, the maximum 

stress in steel facing was 28,000 psi while the maximum stress in foam was only 5.797 psi. 
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CHAPTER 9 

PLANS FOR FUTURE COLLABORATION 

 

The main purpose of this project was development and analysis of a new building envelope 

technology that maximizes internal integration by utilizing a highly-efficient building envelope 

with high-R thermal insulation, active thermal mass and superior air-tightness. The project team 

approach was to combine four common building technologies in a novel way. Structural 

Insulated Panel (SIP) technology was utilized as a structural vehicle and for high-R thermal 

insulation. Novel approach to panel-to-panel connections provided excellent air and moisture 

tightness, but it also works in a similar way as conventional wall framing.  

It is expected that follow-up energy performance analysis for heating and cooling 

dominated climates and enhanced with full scale field testing in several U.S. locations can be 

considered as future collaboration targets. 

 

 



 

112 

ORNL/NFE-04-00699 
 
 
 

INTERNAL DISTRIBUTION 
 

1. A. Desjarlais 
2. B. DeVault 
3. J. Green 
4. P. Hughes 
5. J. Kosny 
6. Laboratory Records–RC 
7. Laboratory records for submission to OSTI  

 
 

EXTERNAL DISBRIBUTION 
 

1. Sally Gaskin, sally@sgiventures.net  
2. X. Sharon Huo, xhuo@tntech.edu  
3. Marilyn Brown, Marilyn.brown@pubpolicy.gatech.edu  

 

mailto:sally@sgiventures.net�
mailto:xhuo@tntech.edu�
mailto:Marilyn.brown@pubpolicy.gatech.edu�

	TABEL OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	NOTATIONS AND DEFINITION
	PROJECT SUMMARY
	PROJECT OBJECTIVES
	CRADA BENEFITS TO DOE
	ACKNOWLEDGEMENTS
	CHAPTER 1
	INTRODUCTION
	CHAPTER 2
	GENERAL INFORMATION OF STRUCTURAL INSULTED PANELS (SIPs)
	2.1 Foam Properties
	2.2 Variation of steel thickness Gages and associated sandwich components
	2.3 Loads
	2.3.1 Loads of the basic panel
	2.3.1.1 Live load of the panels
	2.3.1.2 Rain load of the panels
	2.3.1.3 Snow load of the panels
	2.3.1.4 Wind load of the panels

	2.3.2 Loads of the system column
	2.3.2.1 Live load of the system column
	2.3.2.2 Wind load of the system column

	2.3.3 Loads of the window header

	2.4 Finite Element Analysis Procedure

	CHAPTER 3
	MODELING AND ANALYSIS OF WALL PANELS
	3.1 Description of input and modeling of the basic panel
	3.1.1 Dimensions and modeling of the basic panel
	3.1.2 Finite element model of basic sandwich panel
	3.1.3 Loads

	3.2 Analytical Results of the Sandwich Panel
	3.2.1 Deformation
	3.2.2 Stress and strain

	3.3 Results Comments of the Sandwich Panels
	3.4 Load Capability of the Basic Sandwich Panel
	3.4.1 Vertical load capability of the basic panels
	3.4.2 Wind load capability of the basic panels
	3.4.3 Deflection capability of the basic panels


	CHAPTER 4
	MODELING AND ANALYSIS OF C-SHAPE COLUMNS
	4.1 Description of Input and Modeling of the C-shape Profiles
	4.1.1 Dimensions and modeling of the C-shape profiles
	4.1.2 Finite element model of column with C-shape Profile
	4.1.3 Loads

	4.2 Analytical Results of the C-shape Profile
	4.2.1 Deformation
	4.2.1.1 Deformation of C-shape profile under the load Case 1
	4.2.1.2 Rotation of C-shape column under the load Case 1
	4.2.1.3 Deformation of C-shape column under the load Case 2
	4.2.1.4 Rotation of C-shape column under the load Case 2

	4.2.2 Stresses of the C-shape profiles
	4.2.2.1 Stresses in longitudinal direction of C-shape profile under the load Case 1
	4.2.2.2 Stresses in longitudinal direction of C-shape profile under the load Case 2


	4.3 Load Capability of the C-shape Profile under the load Case 1
	4.3.1 Vertical load capability of the C-shape profile
	4.3.2 Wind load capability of the C-shape profile
	4.3.3 Wind capability of the C-shape profile based on deflection limitation


	CHAPTER 5
	MODELING AND ANALYSIS OF DELTA-SHAPE COLUMNS
	5.1 Description of Input and Modeling of Delta-shape Columns
	5.1.1 Dimensions and modeling of the Delta-shape column
	5.1.2 Finite element model of the Delta-shape column
	5.1.3 Loads

	5.2 Analytical Results of the Delta-shape Column
	5.2.1 Deformation
	5.2.1.1 Deformation of Delta-shape column under the load Case 1
	5.2.1.2 Deformation of Delta-shape column under the load Case 2

	5.2.2 Stresses of the Delta-shape columns
	5.2.2.1 Stresses in longitudinal direction of Delta-shape column under load Case 1
	5.2.2.2 Stresses in longitudinal direction of Delta-shape column under load Case 2


	5.3 Load Capability of the Delta-shape Column
	5.3.1 Load Capability of the Delta-shape Column under the load Case 1
	5.3.1.1 Vertical load capability of the Delta-shape column
	5.3.1.2 Wind load capability of the Delta-shape column
	5.3.1.3 Deflection capability of the Delta-shape column

	5.3.2 Vertical Load Capability of the Delta-shape Column under the load Case 2


	CHAPTER 6
	MODELING AND ANALYSIS OF THE ORIGINAL-SHAPE COLUMN
	6.1 Description of Input and Modeling of the Original Column without foam
	6.1.1 Dimensions and modeling of the original column without foam
	6.1.2 Finite element model of the original column
	6.1.3 Loads

	6.2 Analytical Results of the Original Column without Foam
	6.2.1 Deformation
	6.2.1.1 Deformation of original column under the load Case 1
	6.2.1.2 Deformation of original column under the load Case 2

	6.2.2 Stresses of the original columns
	6.2.2.1 Stresses in longitudinal direction of original column under load Case 1
	6.2.2.2 Stresses in longitudinal direction of original column under load Case 2


	6.3 Description of Input and Modeling of the Original Column with foam
	6.3.1 Dimensions and modeling of the original column with foam
	6.3.2 Finite element model of the original column with foam
	6.3.3 Loads

	6.4 Analytical Results of the Original Column with Foam
	6.4.1 Deformation of the original column with foam
	6.4.2 Stresses of the original column with foam
	6.4.3 Results comments of the original columns with foam


	CHAPTER 7
	MODELING AND ANALYSIS OF THE WINDOW HEADER
	7.1 Description of Input and Modeling of the window header
	7.1.1 Dimensions and modeling of the window header
	7.1.2 Finite element model of the window header model
	7.1.3 Loads

	7.2 Analytical results of the window header
	7.3 Capability of the Window Header

	CHAPTER 8
	CONCLUSION AND RECOMMENDATION
	8.1 Conclusion and recommendation about the basic panel
	8.2 Conclusions and recommendations about the system column
	8.2.1 Comparison of Slenderness Ratio
	8.2.2 Comparison of deformations and stresses for columns under load Case 1
	8.2.3 Comparison of deformations and stresses for columns under load Case 2
	8.2.4 Conclusion from analysis of system columns

	8.3 Conclusions on the window header

	CHAPTER 9
	PLANS FOR FUTURE COLLABORATION

