

WASHINGTON STATE UNIVERSITY Energy Program

WSEC-R 2021

Changes to the WSEC-R Continuous Insulation

Minimize Thermal Bridging • Increase Thermal Resistance Lower Heating Loads • Less Cost to Heat • Greater Durability Less Maintenance • Happier Owner / Occupants

> Rick Blumenthal Program Coordinator, Washington State University Energy Program

washington state university Energy Program

Washington State University Energy Program is a registered provider of AIA-approved continuing education under provider number 10089914. All registered AIA CES Providers must comply with AIA Standards for Continuing Education Programs. Any questions or concerns about this provider or this learning program may be sent to AIA CES (cessupport@aia.org or (800) AIA 3837, Option 3).

This learning program is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

AIA continuing education credit has been reviewed and approved by AIA CES. Learners must complete the entire learning program to receive continuing education credit. AIA continuing education Learning Units earned upon completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request.

washington state university Energy Program

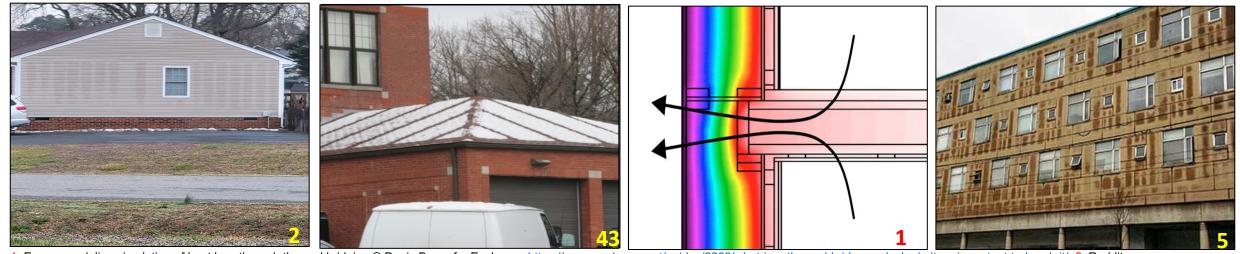
Any mention of trade names, commercial products and organizations in this document does not imply endorsement by Washington State University's Energy Program (WSUEP). The WSUEP and its collaborators make no warranties, whether expressed or implied, nor assume any legal liability or responsibility for the accuracy, completeness or usefulness of the contents of this publication, or any portion thereof, nor represent that its use would not infringe privately owned rights. Further, the WSUEP cannot be held liable for construction defects or deficiencies resulting from the proper or improper application of the content of this education.

Our WSEC-Residential technical support team is not an affiliate of, nor do we speak for, the Washington State Building Code Council (SBCC). Official opinions of WSEC intent are made only by the SBCC in response to official inquiries submitted to the SBCC by authorities having jurisdiction. While we try to stay aligned with the SBCC, the technical support we provide is advisory only and non-binding on authorities having jurisdiction, builders, designers, and the building trades personnel involved with construction and remodeling of residential structures.

LEARNING OBJECTIVES

- Continuous Insulation What is it ?
- Water, Air and Thermal Control
- Application
- Options
- Cladding Attachment and Long Term Movement Cladding Over Rigid
- Advanced Framing Cost and Energy Savings can offset costs of CI

TODAY'S AGENDA


- Background
- Evolving Codes
- The Case for Continuous Insulation
- Options
- Cladding Attachment and Long Term Movement Cladding Over Rigid
- Advanced Framing Cost and Energy Savings can offset costs of CI

THE CASE FOR CONTINUOUS INSULATION

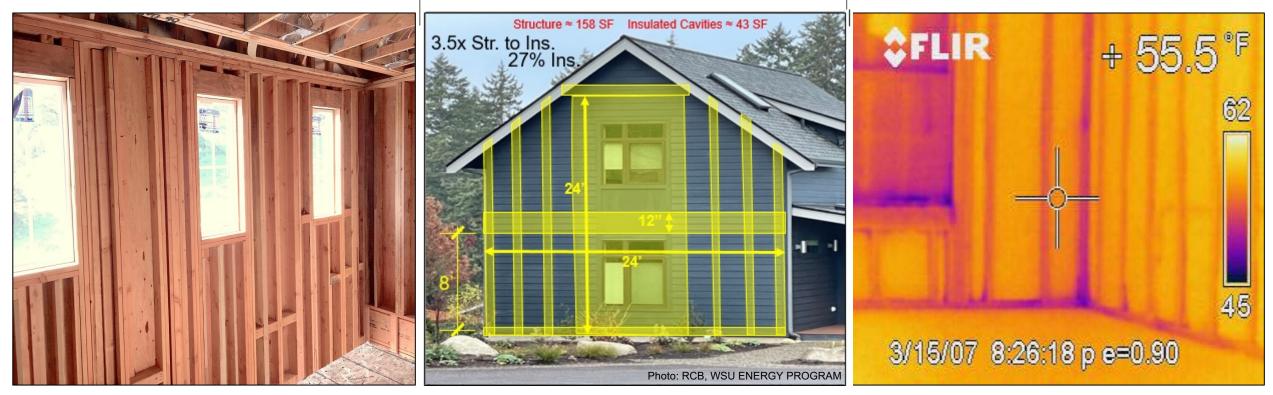
- Residential building sector consumes ± 21% of the primary energy used in the U.S.
- Effective thermal resistance is limited by stud cavity depth, framing and structural components
- Cost effective means of increasing thermal resistance of wall assemblies
- Better effective R-Value with Advanced Framing cavity insulation + CI, R values are greater than just adding
- Energy code push for increased efficiency in energy consumption
- It is more cost-effective to add insulation during construction than to retrofit it after the house is finished
- Air barrier and drainage plane integrity
- Furring strips create a significant upgrade in water management
- Reduced risk of condensation and wood decay in cold climates
- Seasonal thermal and moisture variations of the wood frame are greatly reduced
- Freeze-thaw in masonry assemblies practically eliminated plus limits rainwater absorption
- Provides a substantial upgrade in water management and drying potential
- Saves \$\$\$ over annual energy cost for space conditioning

KEY DEFINITIONS: IECC 2021

- CONTINUOUS INSULATION (CI) Uninterrupted insulating material installed across all structural members*
 - May be installed at interior or exterior
 - Installed to minimize Thermal Bridging
- **THERMAL BRIDGING** a material with higher Thermal Conductivity than the surrounding materials, a path of least resistance for heat transfer into or out of conditioned space.
- **THERMAL CONDUCTIVITY** Ability of a substance, (material) to transfer (heat) energy through materials that are in direct contact with each other.
- **EFFECTIVE R VALUE** the overall thermal resistance of a complete assembly

1. Energy modeling simulation of heat loss through thermal bridging © Denis Boyer for Ecohome; https://www.ecohome.net/guides/2262/what-is-a-thermal-bridge-and-why-is-it-so-important-to-break-it/ 2. Reddit.com; https://i.redd.it/xgigh3y33km81.jpg 3. PROJECT INVESTIGATING ACCURACY OF 3-D THERMAL BRIDGING MODELING OF ROOF FASTENERS TO BE CARRIED OUT IN BEST-LAB TEST CHAMBER, BUILDING ENCLOSURE SYSTEMS LAB GEORG REICHARD, VIRGINIA TECH. JULY 15, 2019; 4. GREEN BUILDING ADVISOR, THERMAL BRIDGING, https://www.ecohome.net/guides/2262/what-is-a-thermal-bridge-and-why-is-it-so-important-to-break-it/ 2. Reddit.com; https://www.ecohome.net/guides/2262/what-is-a-thermal-bridge-and-why-is-it-so-important-to-break-it/ 2. Reddit.co

SPEAKING THE SAME LINGO – 手に入れました? – WHAT EXACTLY DO WE MEAN

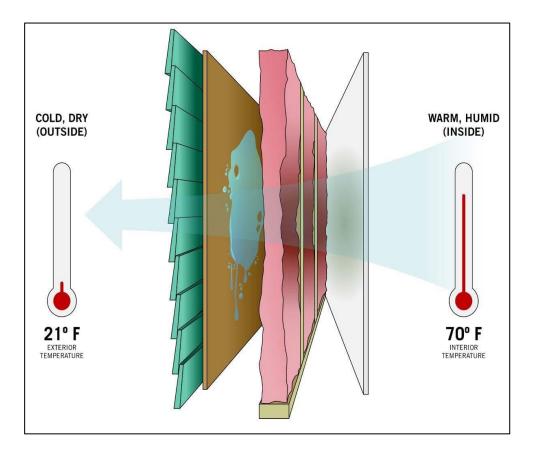

Fundamental Principals:

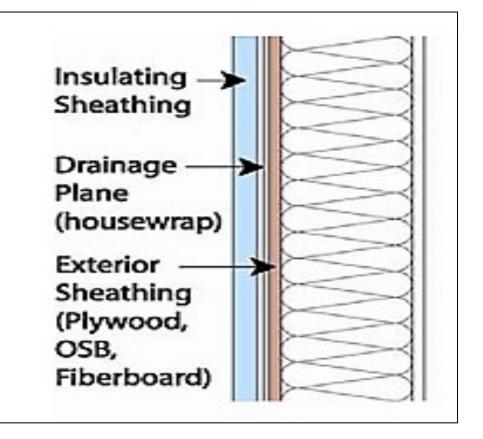
- Wall assemblies are <u>one part</u> of the *Building Enclosure* function as an environmental separator
- Four principal layers needed for durability:
 - Water control layer bulk (penetrating) water, (rain) most important in both design and construction, water repellant, located behind cladding, designed to drain water passed through the cladding, must be continuous, i.e., *drainage plane, water resistive barrier, water control layer* : 3/16" 3/8" for rain
 - Air control layer primary air enclosure boundary, separates *indoor conditioned* air from outdoor and unconditioned air. Must be continuous, impermeable to airflow, durable over lifetime of building, best practice is air control layer at both exterior and interior.
 - Vapor control layer Keeping water vapor out of the assembly, let it out if it enters. Can be complicated, i.e., keeping water vapor out might trap it in. Best to design a *flow-through* assembly, vapor flow in both directions, warm side of insulation in winter.
 - Thermal control layer Control temperature on condensing surface, best application is exterior insulation, (ci) higher surface temperature, (above dew point) interior water vapor will not condense

THERMAL BRIDGING

Over-framed walls like this lose a substantial amount of energy via thermal bridging. Exterior insulation overcomes much of this loss. "...thermal bridging through framing components reduces insulation performance by as much as <u>15-20 percent in wood frame</u> construction and by <u>40-60 percent in metal framed</u> buildings."*

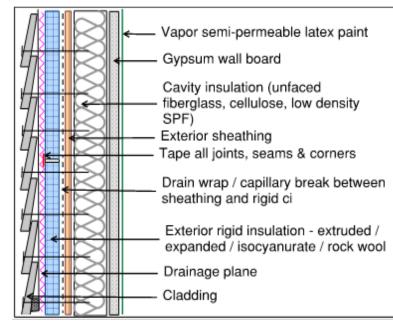
Melted lines on a frosty wall show the heat passing through the wall at stud locations. Exterior foam insulation would make a difference. This infrared image shows the cold studs in a heated house on a winter day. Exterior foam insulation could prevent this source of heat loss.

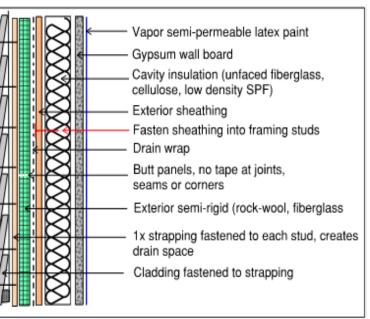



*builderonline.com/building/building-enclosure/exterior-foam-insulation-problems-and-solutions, Exterior Foam Insulation: Problems and Solutions, July 30,2020 Echotape.com, Continuous Insulation – What is it and Why Do We Care? Builder Magazine, Avoiding Common Callbacks, Exterior Foam Insulation: Problems and Solutions, Steve Easley, July 30, 2020

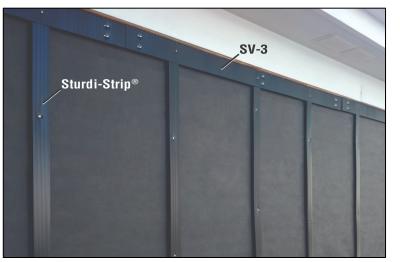
THE JUSTIFICATION FOR CONTINUOUS INSULATION

- More thermally efficient enclosure assemblies
- Increased air tightness
- A means of reducing the condensation potential within exterior wall assemblies
- Decreased risk of moisture damage
- The base wall assembly generally remains unchanged
- Combined with advanced framing can provide cost savings from reduction of building materials, i.e., fewer studs
- Completely wraps the exterior of the building framing rather than insulation just added to cavities between studs
- Reduced thermal stress of the structure
- Ensures building will easily hit energy standards


A BIT OF BUILDING SCIENCE



Huber Engineered Woods, Designing with Continuous Insulation for Thermal and Moisture Management, April 10, 2018 BuildingScience.com, Guide to Insulating Sheathing, Building America, U.S. Dept. of Energy. January 2007;


COMMON RERSIDENTIAL WALL ASSEMBLIES WITH CONTINUOIUS INSULATION

WOOD FRAME WALL W/ FOAM ci

WOOD FRAME WALL W/ ROCK WOOL ci

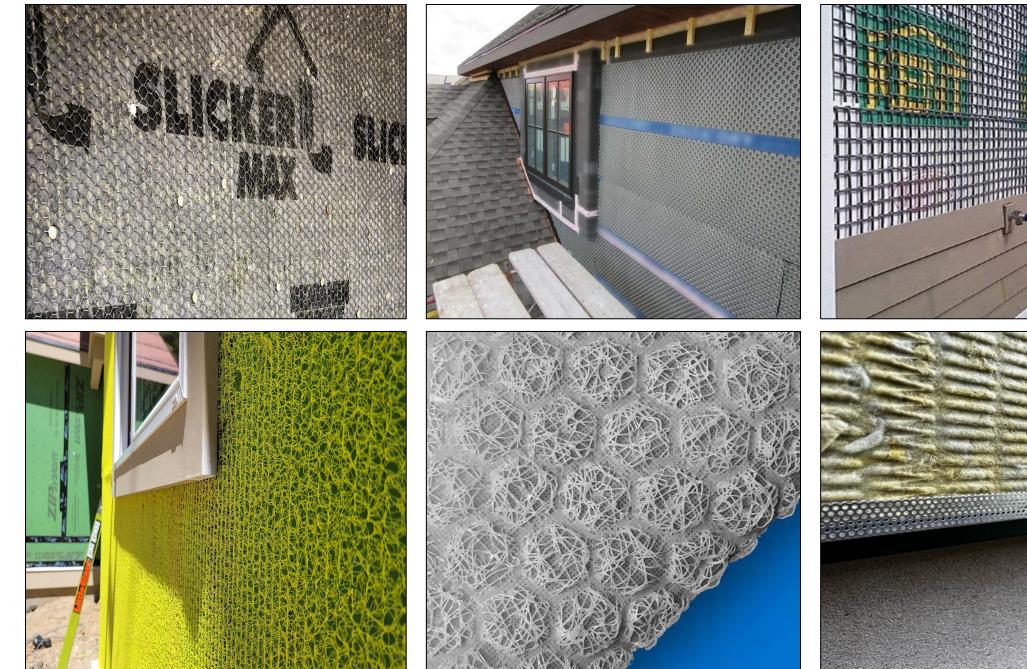
Architect Newswire, Sturdi-Strip®, Cora Vent Inc. Steve Lowe, 2024;

Bluekin, BK Steel Nails;

Brick / stone veneer		
Drainage gap, 1" min	\rightarrow	
Exterior rigid insulation - WPS, EPS,		
Isocyanurate, rock wool		
Membrane or fluid applied		No. of Concession, Name
air barrier / vapor retarder		
Exterior sheathing - plywood,		
OSB, non paper-faced GWB		
Stud wall w/ cavity insulation,		
kraft faced or unfaced		
GWB		×
Vapor semi permeable latex paint		
when cavity insulation is unfaced		A DESCRIPTION

BRICK VENEER WALL W/ FOAM ci

Fine Homebuilding, May 16, 2016


Building Science Corp., BSI-120 Understanding Walls, December 15, 2020

This foil-faced foam sheathing has taped seams and proper flashing details so it can serve as a drainage plane.

SIMPLE MATH ? WHY AN R-25 WALL IS NOT EQUAL TO AN R-20 + 5 Ci

- Energy code math is no different than any other math, i.e., 1+1=2 still holds true
- Units must agree 1 apple + 2 oranges ≠ 3 oranges; adding up R-Values for insulation located in different parts of a wall does not work either:
 - Cavity insulation is *interrupted* by framing allows heat through more readily
 - Continuous insulation is *uninterrupted* framing (heat) losses are minimized
 - Layer of Cavity insulation w/ same R value is less effective than layer of Continuous Insulation
- Method for calculating requires the *Parallel Path*
 - Determine R-Value for each different path, i.e., through two paths: cavity insulation, framing
 - o Include all material and properties, i.e. *air films, cladding, sheathing, drywall*
 - o Combine the total of the two paths to get overall R-Value of entire wall assembly
 - Totals = the sum of R-Values for each layer in each path

PARALLEL PATH EXAMPLES (Wood Framed Walls)

EXAMPLE - R25 (cavity) + RØ (ci) wall: and R20 + 5 (ci) wall

	R25 + 0ci Wa	II	R20 + 5ci Wa	П
Layer	Framing Pat	h Cavity Path	Framing Patl	h Cavity Path
Outside Air Film	R-0.17	R-0.17	R-0.17	R-0.17
Siding	R-0.62	R-0.62	R-0.62	R-0.62
Continuous Insulatio	n		R-5	R-5
7/16" OSB	R-0.62	R-0.62	R-0.62	R-0.62
SPF 2x6 Stud	R-6.875		R-6.875	
Cavity Insulation		R-25		R-20
½" Drywall	R-0.45	R-0.45	R-0.45	R-0.45
Inside Air Film	R-0.68	R-0.68	R-0.68	R-0.68
Total	R-9.415	R-27.54	R-14.415	R-27.54

Same R-Value though R20 +5ci is 12% greater in thermal resistance than R25 +Ø ci

NEXT STEPS and ASSUMPTIONS

- Combine the two parallel paths for overall value
- Assume 25% Framing Factor, (*f f*) = 21% studs, 4% headers
- 75% cavity area typical for 16" o.c. framing
- Calculate the U-Factor:

$$U = f f_{framing} * \frac{1}{R_{framing}} + f f_{cavity} * \frac{1}{R_{cavity}}$$

R25 Cavity + Ø ci wall

U = .25 * 1 / 9.45 + .75 * 1 / 27.54 = .25 * .1058 + .75 * .036 =

Effective U Factor = 0.02645 + 0.027 = 0.05345

R = 18.7

R20 Cavity + 5 ci wall

U = .25 * 1 / 14.45 + .75 * 1 / 27.54 = .25 * .0173 + .75 * .036 = Effective U Factor = 0.0173 + 0.0272 = 0.0443

R = 22.57

1.Crandell, J. & Ahrenholz, T. Foam Plastics Applications for Better Living, "Energy Code Math Lesson: Why an R-25 Wall is Not Equal to a R-20+5ci", August 7, 2017

Ci COMBINED WITH ADVANCED FRAMING – WHAT'S THE DOWN SIDE ?

Advanced Framing · Advanced Wall Systems (AWS) · Optimum Value Engineering (OVE)

✓ Minimize the amount of wood, 5% to 10% less lumber, (Board Ft.)

✓ Faster build – uses 30% fewer pieces

✓ Framing factor is reduced from 25% to 17%

✓ Provides \approx 2-1/2 Ft.³ additional insulation, (assumes single top plate, i.e. 94" 2x6 stud)

✓ Reduces the effect of thermal bridging

- ✓ Reduces air infiltration and exfiltration
- \checkmark Includes increased header insulation
- ✓ Raised heal truss allows full insulation over exterior wall plate
- ✓ Structural members are stacked creating direct load paths, fewer structural beams
 - ✓ Studs support floor, ceiling and roof

✓ Reduced resource consumption, less waste

✓ BOTTOM LINE – COST / ENERGY SAVINGS FOR GC, TRADES, OWNER

SAME WALL ASSEMBLY WITH ADVANCED FRAMING

- Combine the two parallel paths for overall value
- Assume 17% Framing Factor- typical for 24" o.c. framing
- 83% cavity area typical for 24" o.c. framing
- Calculate the U-Factor:

EXAMPLE - R25 (cavity) + RØ (ci) wall and R20 + 5 (ci) wall with Advanced Framing

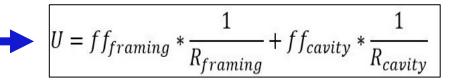
R25 Cavity + Ø ci wall

$$U = .17 * 1 / 9.45 + .83 * 1 / 27.54 = .17 * .1058 + .83 * .036 =$$

Effective U Factor = 0.0179 + 0.0301 = 0.048

R = 20.83

R20 Cavity + 5 ci wall


U = .17 * 1 / 14.45 + .83 * 1 / 27.54 = .17 * .1058 + .83 * .036 = Effective U Factor = 0.0118 + 0.0301 = 0.0419

Framing Path Cavity Path Framing Path Cavity Path Layer Outside Air Film R-0.17 R-0.17 R-0.17 R-0.17 Siding R-0.62 R-0.62 R-0.62 R-0.62 Continuous Insulation ---R-5 R-5 ---7/16" OSB R-0.62 R-0.62 R-0.62 R-0.62 SPF 2x6 Stud R-6.875 R-6.875 ------Cavity Insulation R-25 R-20 ------1/2" Drywall R-0.45 R-0.45 R-0.45 R-0.45 Inside Air Film R-0.68 R-0.68 R-0.68 R-0.68 R-27.54 R-27.54 Total R-9.415 R-14.415

R25 + Oci Wall

R20 + 5ci Wall

PROS AND CONS OF ADVANCED FRAMING

CONCERN

- Tile cracking due to joist spacing increase to 24"
- Increased joist depth at 2nd floor
- Picture hanging, other wall decorations
- Drywall support, flat walls
- Shifting windows and partitions to 24" layout
- Code compliance acceptance
- Owner acceptance
- Energy savings
- Construction cost

RESOLUTION

- Increase joist depth, decrease spacing, blocking
- Accommodate added depth at stair rise / run
- May require additional blocking
- $\frac{1}{2}$ " drywall, $\frac{1}{2}$ " ceiling board on walls, $\frac{5}{8}$ " drywall
- Optimal but not necessary to maintain aesthetics
- IRC approved w/ specialized stipulations (A103)
- No requirement to inform though identify benefits
- Approximately equal to 13% annually
- Simplicity of framing + less complicated for trades

CONTINUOUS INSULATION

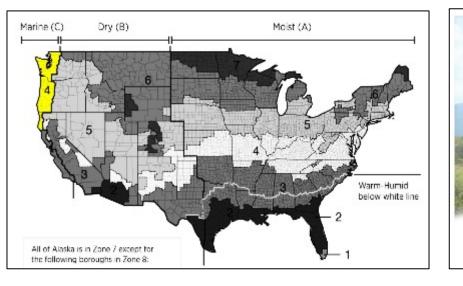
Traditional Continuous Insulation Insulation

Kingspan, youtube.com/watch?v=1No6rtOexqk

INSTALLING CONTINUOUS INSULATION

Choose a product that is easy to install and will withstand exposure until covered

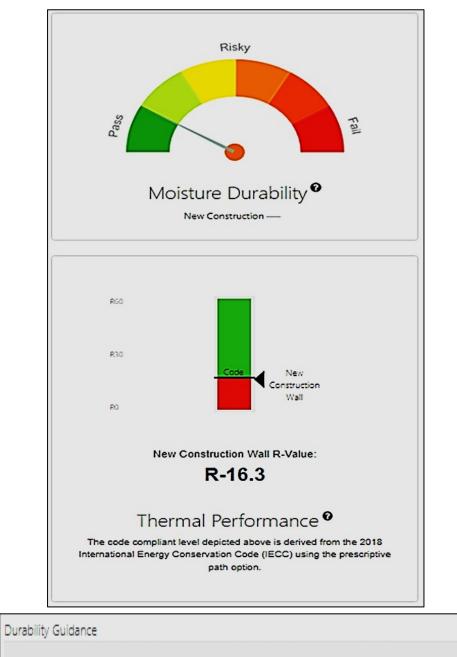
Store according to manufacturer's recommendations prior to installation

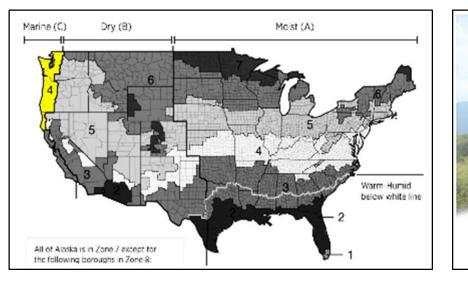

Install according to manufacturer's recommendations and best practices:

- Install over clean, dry surface, do not trap moisture
- Install cladding with fasteners appropriate for type an length for the wall assembly
- WSEC-R defined Section R402.1.4
 - Continuous insulation (ci) alone shall be used to determine compliance with the continuous insulation R-value requirements in Table R402.1.3.

CLIMATE ZONE 5 AND MARINE 4					
Fenestration U-Factor ^{b, j}	0.30				
Skylight ^b U-Factor	0.50				
Ceiling R-Value ^e	60				
Wood Frame Wall ^{g,i} R-Value	20+5 or 13+10				
Floor R-Value	30				
Below-Grade ^{c,h} Wall R-value	10/15/21 int + 5TB				
Slab ^{d,f} R-Value & Depth	10, 4 ft				

TABLE R402.1.3 INSULATION MINIMUM R-VALUES AND FENESTRATION REQUIREMENTS BY COMPONENTS^a

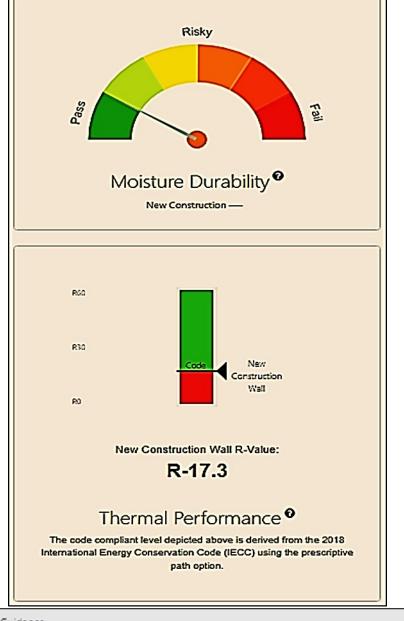



Typical Wood Frame Wall

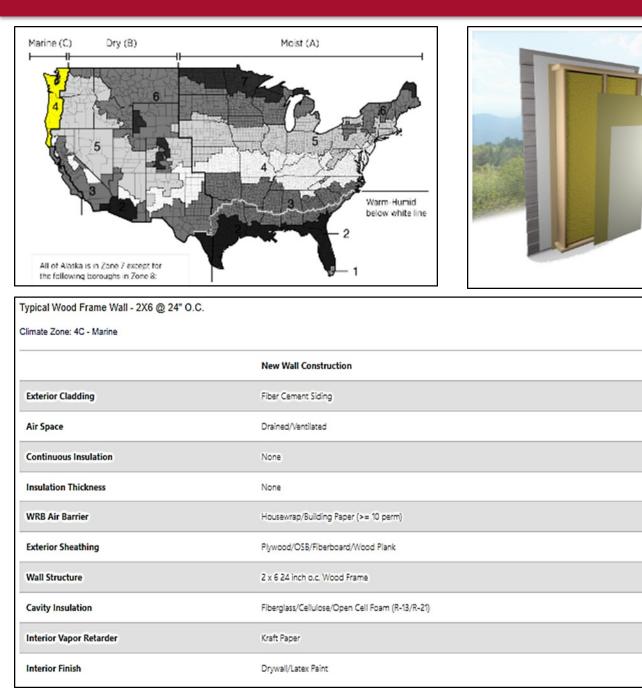
Climate Zone: 4C - Marine

	New Wall Construction				
Exterior Cladding	Fiber Cement Siding				
Air Space	None				
Continuous Insulation	None				
Insulation Thickness	None				
WRB Air Barrier	Housewrap/Building Paper (>= 10 perm)				
Exterior Sheathing	Plywood/OSB/Fiberboard/Wood Plank				
Wall Structure	2 x 6 16 inch o.c. Wood Frame				
Cavity Insulation	Fiberglass/Cellulose/Open Cell Foam (R-13/R-21)				
Interior Vapor Retarder	Kraft Paper				
Interior Finish	Drywall/Latex Paint				

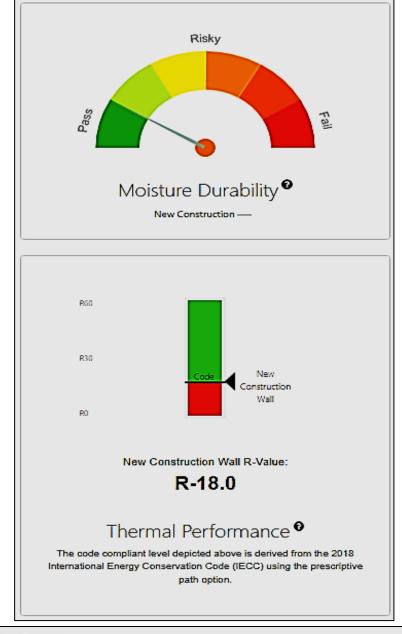
The Building Science Advisor, Oak Ridge National Lab, bsa.ornl.gov

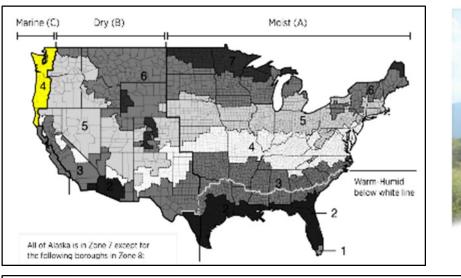


Typical Wood Frame Wall - 2X6 @ 16" O.C. + Air Space


Climate Zone: 4C - Marine

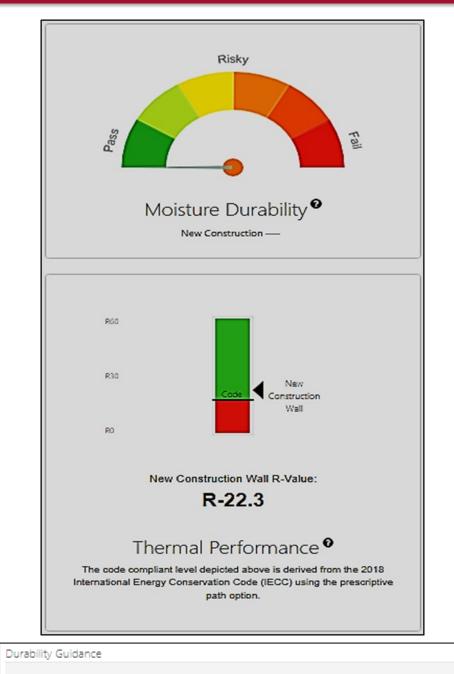
	New Wall Construction
Exterior Cladding	Fiber Cement Siding
Air Space	Drained/Ventilated
Continuous Insulation	None
Insulation Thickness	None
WRB Air Barrier	Housewrap/Building Paper (>= 10 perm)
Exterior Sheathing	Plywood/OSB/Fiberboard/Wood Plank
Wall Structure	2 x 6 16 inch o.c. Wood Frame
Cavity Insulation	Fiberglass/Cellulose/Open Cell Foam (R-13/R-21)
Interior Vapor Retarder	Kraft Paper
Interior Finish	Drywall/Latex Faint

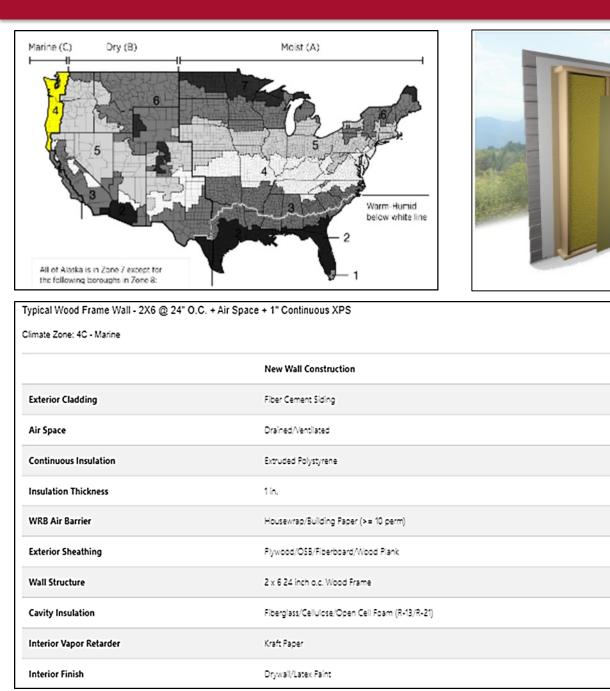

The Building Science Advisor, Oak Ridge National Lab, bsa.ornl.gov


Durability Guidance

The Building Science Advisor, Oak Ridge National Lab, bsa.ornl.gov

Durability Guidance

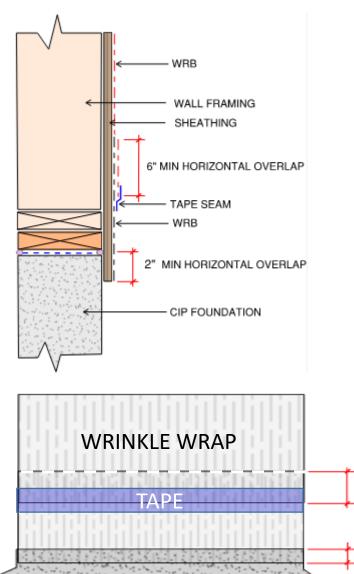



2x6 @ 16" O.C. + Air Gap + 1" XPS ci

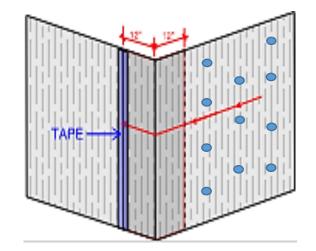
Climate Zone: 4C - Marine

	New Wall Construction				
Exterior Cladding	Fiber Cement Siding				
Air Space	Drained/Ventilated				
Continuous Insulation	Extruded Polystyrene				
Insulation Thickness	1in.				
WRB Air Barrier	Housewrap/Building Paper (>= 10 perm)				
Exterior Sheathing	Plywood/OSB/Fiberboard/Wood Plank				
Wall Structure	2 x 6 16 inch o.c. Wood Frame				
Cavity Insulation	Fiberglass/Cellulose/Open Cell Foam (R-13/R-21)				
Interior Vapor Retarder	Kraft Paper				
Interior Finish	Drywall/Latex Paint				

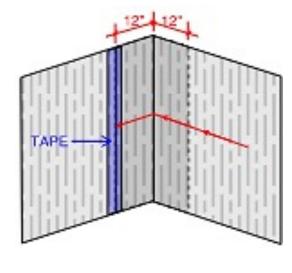
The Building Science Advisor, Oak Ridge National Lab, bsa.ornl.gov



The Building Science Advisor, Oak Ridge National Lab, bsa.ornl.gov

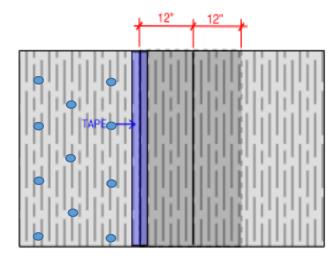

Durability Guidance

INSTALL WRB – DRAIN / WRINKLE WRAP



OUTSIDE CORNER WRB OVERLAP

Fasteners (
) shown as examples only



INSIDE CORNER WRB OVERLAP

6'

FIELD BUTT JOINT WRB OVERLAP

WRB INSTALLATION AND OVERLAP CONDITIONS

- Install wrinkle or drain wrap behind rigid
 exterior ci
- Install smooth and tight to sheathing avoiding wrinkles, bubbles, etc.
- Fasten to sheathing according to manufacturer's recommendations
- Overlap per WRB manufacturer's recommendations and best practices
- Tape / seal all seams and butt joints with Manufacturer's recommended tape or sealant

DEALING WITH FENESTRATIONS AND OTHER PROJECTIONS

https://buildingscience.com/documents/insights/bsi-085-windows-can-be-a-pain

REQUIREMENTS FOR SUCCESS

- Rough window buck extends so that it is flush with face of drainage gap furring
- ✓ If installing rigid foam insulation, install a drain or wrinkle wrap WRB to create a capillary break
- ✓ Fasten, overlap, tape and seal all materials according to manufacturer's recommendations
- Avoid installing wet materials, protect materials from weather and exposure limits per manufacturer's recommendations

Pest exclusion vs wire mesh opening size							
		6	0	Ø			
Opening size of wire mesh	1/2" 13.7mm	1/4" 6.35mm	1/16" 1.59mm	1/55" 0.46mm			
This size excludes these and larger	Rats	Mice	Most insects	Subterranean termites			

https://polyguard.com/architectural/blog/what-is-a-weep-hole

PROGRESSION SUMMARY

- Install extruded polystyrene or foil-faced polyisocyanurate
- Install sill flashings on windows and doors.
- Install flashings on all penetrations no water bypassing drainage plane to the assembly
- Install windows and doors. Proper gravity/shingle lapping of the flashing tape
- Tape the exterior insulation as the drainage plane
- Install the exterior cladding over furring creating drainage plane gap min 3/16"

RECOMMENDATIONS FROM THE FIELD

- Drainage planes must be smooth or not significantly textured
- Superior thin tapes are acrylic based, 3 4 in. wide
- Superior flashing tapes are butyl based, 4 9 in. wide, 20 mil thick, have a compatible facer
- Z-flashings should be used on any high-risk horizontal joint:
 - \circ Butyl-based flashing tapes 6 9 in. wide are preferred
 - – No contractor recommends using polyethylene sheet as a Z-flashing.
- Where thick tapes (20-30 mil) are installed horizontally, a termination strip of thin acrylic tape should always be used
- On horizontal joints, the tape should be offset high; two-thirds of the tape should be on the top board and one-third lapped over the bottom board.
- •Vertical joints should be on framing members and be taped with 3 4 in. wide thin tape and gravity lapped with the horizontal joint

2021 INTERNATIONAL RESIDENTIAL CODE

R703.15 - CLADDING ATTACHMENT OVER FOAM SHEATHING TO WOOD FRAMING

- Installed in accordance with Section R703
- The cladding manufacturer's approved instructions including over foam plastic
- Cladding or furring attachments through foam sheathing to framing shall meet or exceed the minimum fastening requirements of Section R703.15.1, Section R703.15.2

EXCEPTIONS

- Cladding Mfg. has provided *approved* installation instructions over foam plastic
- EIFS reference Section R703.9
- Anchored masonry / stone over foam reference Section R703.8

CLADDING ATTACHMENT OVER THICK EXTERIOR INSULATION

- Resistive capacity of fastener, i.e., screw, nail to bending or failure
- Bearing strength of furring
- Compressive strength of rigid insulation
- Static friction between layers
- Impact(s) of climate exposure on vertical movement of furring

RESEARCH AND TESTING

- 12 assemblies tested with four different insulation types in an outdoor exposed environment
- Loading at three different levels: 8lb/fastener, 15lb/fastener and 30lb/fastener spaced at 16 and 24 inches
- Measurements recorded at various intervals between July and September 2012

CONSIDERATIONS

- How much force is needed to cause long fasteners to fail under load.
- How does environment exposure impact the movement of furring strips attached through thick, rigid insulation and into a wood structure.

CLADDING ATTACHMENT THROUGH 4 INCHES OF EXTERIOR INSULATION

Insulation types tested:

- Expanded Polystyrene EPS
- Extruded Polystyrene XPS
- Foil Faced Polyisocyanurate PIC
- Rigid Mineral Fiber MF

WHAT FORCES INFLUENCE VERTICAL SHIFT OF THE SYSTEM ?

- How much does (gravitational) force influence vertical shift of the system
- Environmental exposure affecting vertical shift of furring strips attached directly through insulation back to a wood structure

SHORT TERM INITIAL LOADING

- 4x8 panel
- 1x3 furring @24" O.C.
- #10 wood screws @16" O.C.
- 4" and 8" thick rigid insulation
- Load applied to furring strips
- Deflection, (shift) measured between stud framing and furring to capture furring deflection only

LONG-TERM EXPOSURE TESTING

- Cladding weight resulting in 30 lbf. per fastener load was too great
- Unacceptable creep of the system was clearly observed
- Limiting cladding weight to 8lbf per fastener demonstrated stable performance.
- Assemblies loaded to 15 lbf. per fastener showed pretty stable performance, may slight indication of system creep
- Recommended to use max load / fastener of no more than 10 lbf. based on a standard #10 wood screw
- May be installed through up to 4 in. of insulation (Table 1).
- Higher capacities would be expected with larger screws or reduced insulation thickness.

Table 1. Recommended Vertical Fastener Spacing (Minimum #10 Wood Screw) Based on Cladding

Cladding Weight (psf)	16 in. o.c. Furring	24 in. o.c. Furring
5	18	12
10	9	6
15	6	4
20	4	3
25	3	2

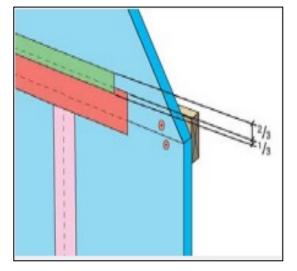
- Insulation up to 1 ½ in. direct attachment of cladding through the insulation back to the structure is a
 practical technique
- Currently addressed in Table R703.4 International Residential Code (IRC 2012).
- Beyond 1 $\frac{1}{2}$ in. of thickness, alternate means for cladding attachment is required
- Fastener lengths for cladding nail guns may be a challenge for projects looking to exceed 1 ½ in.
- Thick layers of exterior insulation (levels greater than 1 ½ in.),
- Use wood furring strips attached through the insulation back to the structure

TABLE R703.15.2 FURRING MINIMUM FASTENING REQUIREMENTS FOR APPLICATION OVER FOAM PLASTIC SHEATHING TO SUPPORT CLADDING WEIGHT^{a, b}

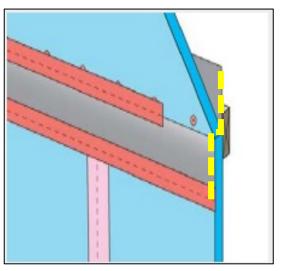
FURRING FRAMING MATERIAL MEMBER			MINIMUM PENETRATION INTO WALL FRAMING (inches) ^c	FASTENER SPACING IN FURRING (inches)	MAXIMUM THICKNESS OF FOAM SHEATHING ^e (inches)									
	ERAMINO				16" o.c. Furring ^f					24″ o.c. Furring ^f				
	MEMBER					Siding Weight:				Siding Weight:				
					3	11	15	18	25	3	11	15	18	25
					psf	psf	psf	psf	psf	psf	psf	psf	psf	psf
				8	4.00	2.45	1.75	1.45	0.95	4.00	1.60	1.10	0.85	DR
		0.131" diameter nail	1 ¹ / ₄	→ 12 —	4.00	1.60	▶ 1.10	0.85	DR	4.00	0.95	0.55	DR	DR
	▶ —	→ —	-	16	4.00	1.10	0.70	DR	DR	3.05	0.60	DR	DR	DR
			meter nail 1 ¹ / ₄	8	4.00	4.00	3.05	2.45	1.60	4.00	2.75	1.85	1.45	0.85
		0.162" diameter nail		12	4.00	2.75	1.85	1.45	0.85	4.00	1.65	1.05	0.75	DR
Minimum 1×	Minimum 2×			16	4.00	1.90	1.25	0.95	DR	4.00	1.05	0.60	DR	DR
wood furring ^d	wood stud			12	4.00	2.30	1.60	1.20	0.70	4.00	1.40	0.85	0.60	DR
		No.10 wood screw 1	1	16	4.00	1.65	1.05	0.75	DR	4.00	0.90	DR	DR	DR
				24	4.00	0.90	DR	DR	DR	2.85	DR	DR	DR	DR
		1/4" lag screw 11/2	12	4.00	2.65	1.90	1.50	0.90	4.00	1.65	1.05	0.80	DR	
			16	4.00	1.95	1.25	0.95	0.50	4.00	1.10	0.65	DR	DR	
				24	4.00	1.10	0.65	DR	DR	3.25	0.50	DR	DR	DR

HARDIE PLANK LAP SIDING AVERAGE WEIGHT PER SQUARE FOOT OF AN 8.25" WIDE PLANK = 7LBS

a. Wood framing and furring shall be Spruce-pine-fir or any wood species with a specific gravity of 0.42 or greater in accordance with <u>AWC NDS (American Wood Council National Design</u> Specification

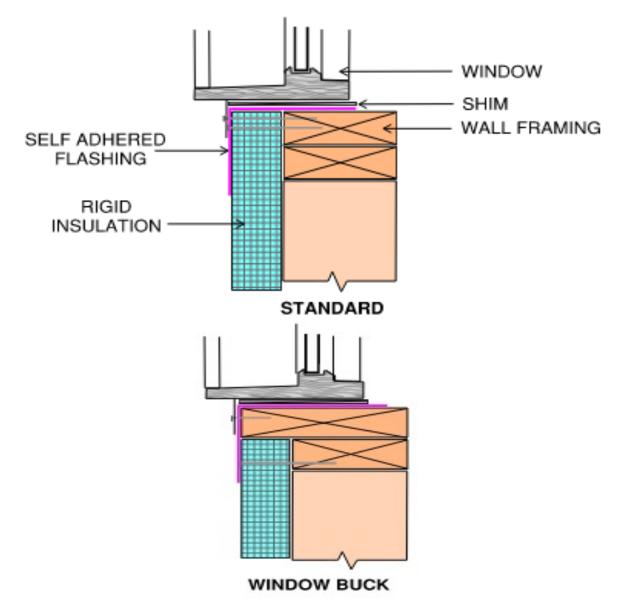

b. Nail fasteners shall comply with F1667ASTM, except nail length shall be permitted to exceed ASTM F1667 standard lengths.

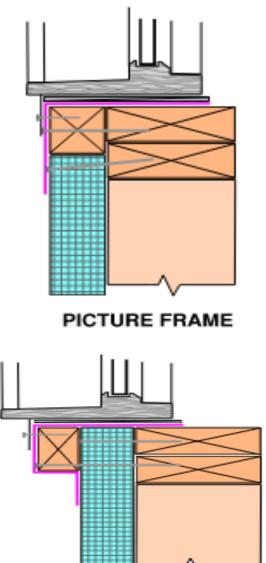
BUILDING AMERICA – TAPED INSULATING SHEATHING DRAINAGE PLANES


Best practice and product recommendations from the interviewed contractors and homebuilders, who identified three significant strategies for successfully using taped insulating sheathing as the drainage plane:

- Limit or eliminate horizontal joints wherever possible.
- Where a horizontal joint exists, use superior materials.
- Require frequent installation inspection and regular trade training to ensure proper installation.

GOOD — 3 to 4 in. acrylic tape

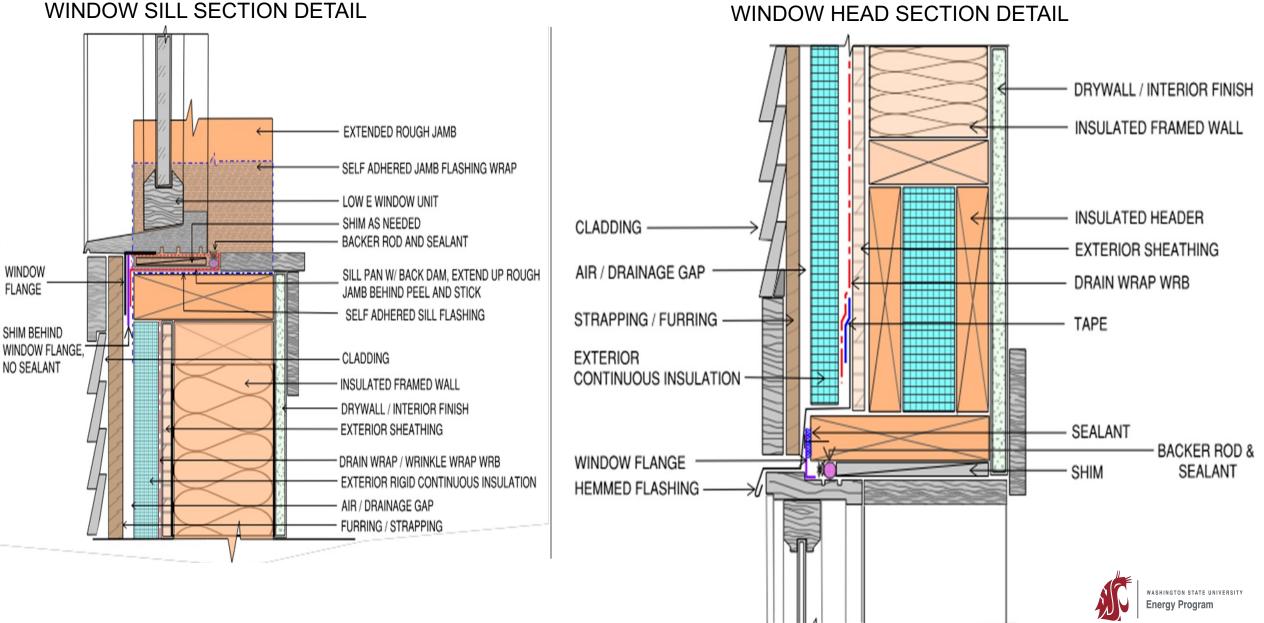

BETTER — 4 to 6 in. wide butyl tape with 2 in. acrylic termination tape



BEST — Butyl Z-flashing with 2 in. acrylic termination tape

Recommended Taped Sheathing Practices

FOUR TYPICAL METHODS FOR WINDOW FRAMING WITH RIGID INSULATION



RAIN SCREEN W/ FURRED STRAPPING

Adopted from Continuousinsulation.org, Applied Building Technology Group, LLC, 6/30/2021

INTEGRATING FENESTRATIONS WITH EXTERIOR CONTINUOUS INSULATION

Images: WSU Energy Program

2021 WASHINGTON STATE RESIDENTIAL CODE Chapter 7 Wall Covering

R703.7.3 Water-resistive barriers.

Water-resistive barriers shall be installed as required in Section R703.2 and, where applied *over wood-based sheathing*, shall comply with <u>Section R703.7.3.1</u> or <u>R703.7.3.2</u>.

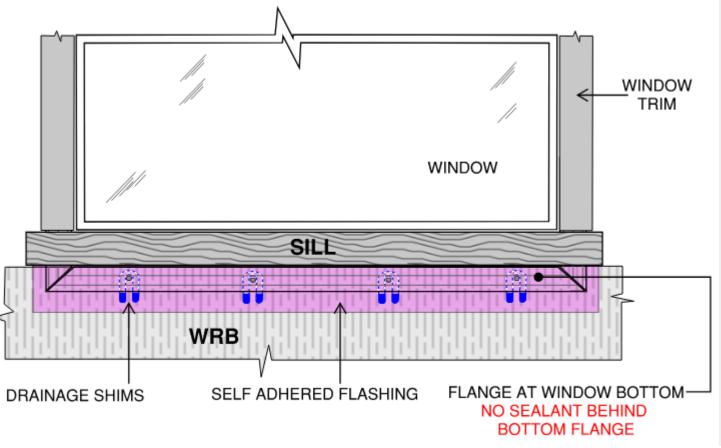
R703.7.3.1 Dry climates.

In Dry (B) climate zones indicated in Figure N1101.7, water-resistive barriers shall comply with one of the following:

1. The water-resistive barrier shall be two layers of 10-minute Grade D paper or have a water resistance equal to or greater than two layers of a waterresistive barrier complying with ASTM E2556, Type I. The individual layers shall be installed independently such that each layer provides a separate continuous plane. Flashing installed in accordance with Section R703.4 and intended to drain to the water-resistive barrier shall be directed between the layers.

2. The water-resistive barrier shall be 60-minute Grade D paper or have a water resistance equal to or greater than one layer of a water-resistive barrier complying with ASTM E2556, Type II. The water-resistive barrier shall be separated from the stucco by a layer of foam plastic insulating sheathing or other non-water-absorbing layer, or a designed drainage space.

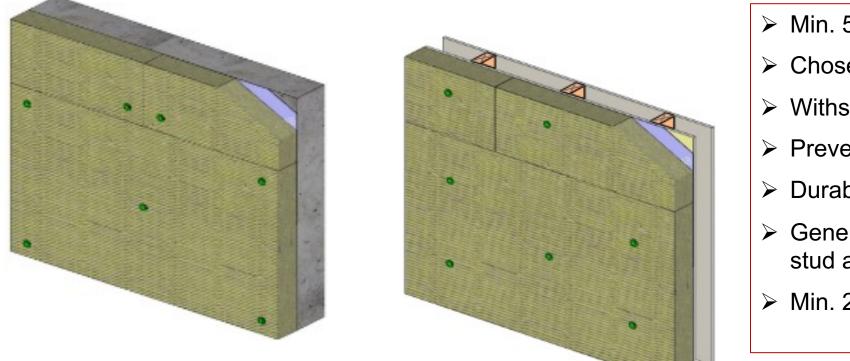

R703.7.3.2 Moist or marine climates.


In the Moist (A) or Marine (C) climate zones indicated in Figure N1101.7, water-resistive barriers shall comply with one of the following:

1. In addition to complying with Section R703.7.3.1, a space or drainage material not less than 3/16 inch (5 mm) in depth shall be added to the exterior side of the water-resistive barrier.

2. In addition to complying with Section R703.7.3.1, Item 2, drainage on the exterior of the water-resistive barrier shall have a drainage efficiency of not less than 90 percent, as measured in accordance with ASTM E2273 or Annex A2 of ASTM E2925.

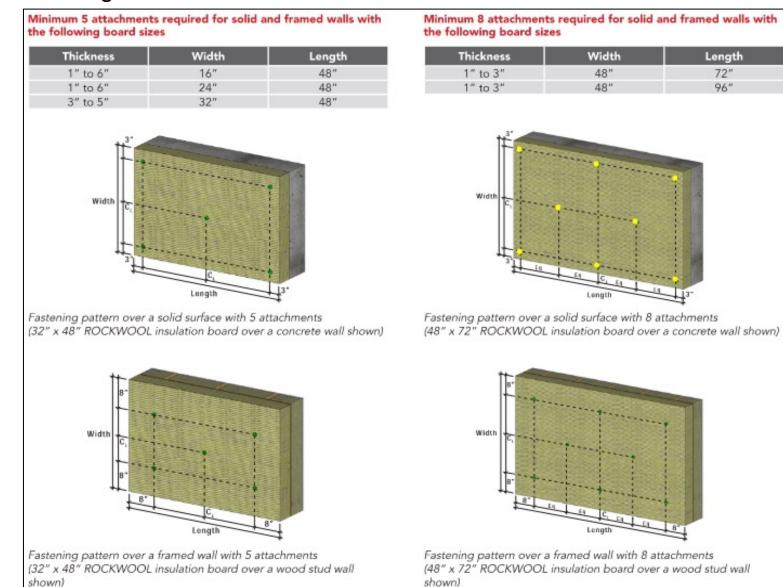
BOTTOM WINDOW FLANGE WITH DRAINAGE SHIMS



EXTERIOR ELEVATION

WHAT ABOUT MINERAL WOOL, RIGID AND SEMI - RIGID INSULATION ?

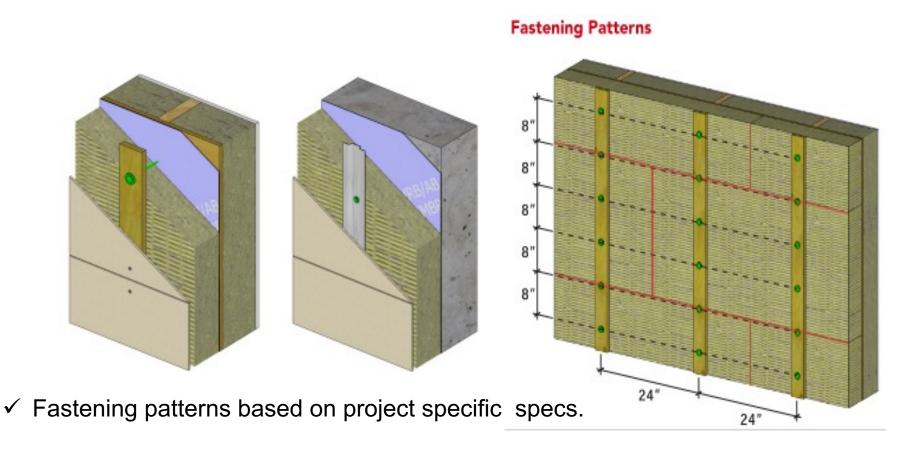
- Effective thermal performance of wall assemblies using fibrous board insulation products will be impacted by the attachment method used and the installation.
- Must be installed in continuous, full contact with the substrate, i.e., sheathing.


Min. 5 fasteners per board

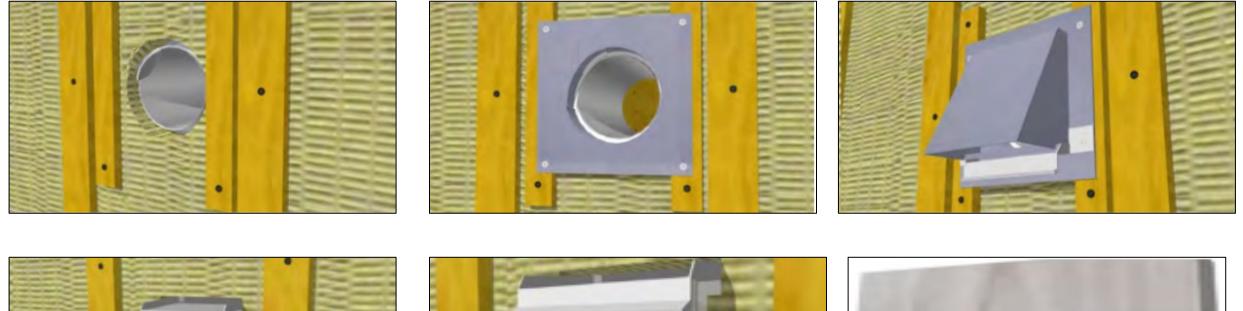
- Chosen per substrate type
- Withstand pullout & shear
- Prevent insulation tear through
- Durable to environmental conditions
- General rule embed min. 1.5" into stud and concrete
- Min. 2" diameter washers

Mineral wool board supported by 5 fasteners with washers over solid surface, (concrete) and over wood or metal studs – fasteners must penetrate studs.

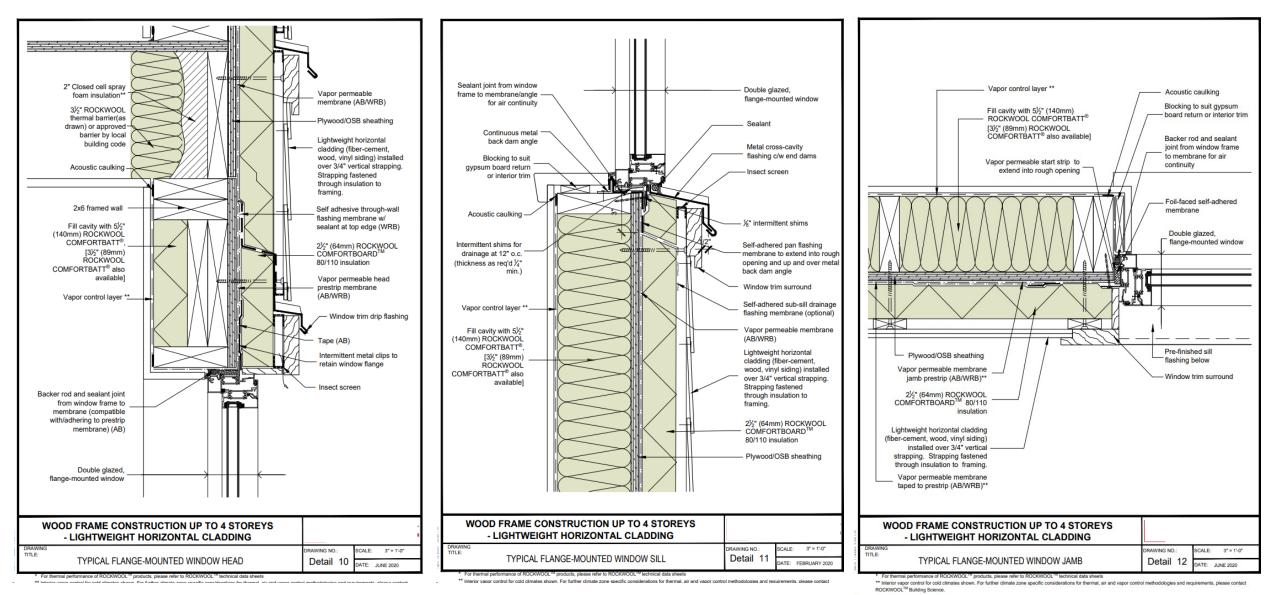
FASTENING PATTERNS – BOARD DIMENSION DICTATES NUMBER OF FASTENERS


Boards up to 96" in length and different width and thickness over solid wall and wood / metal studs:

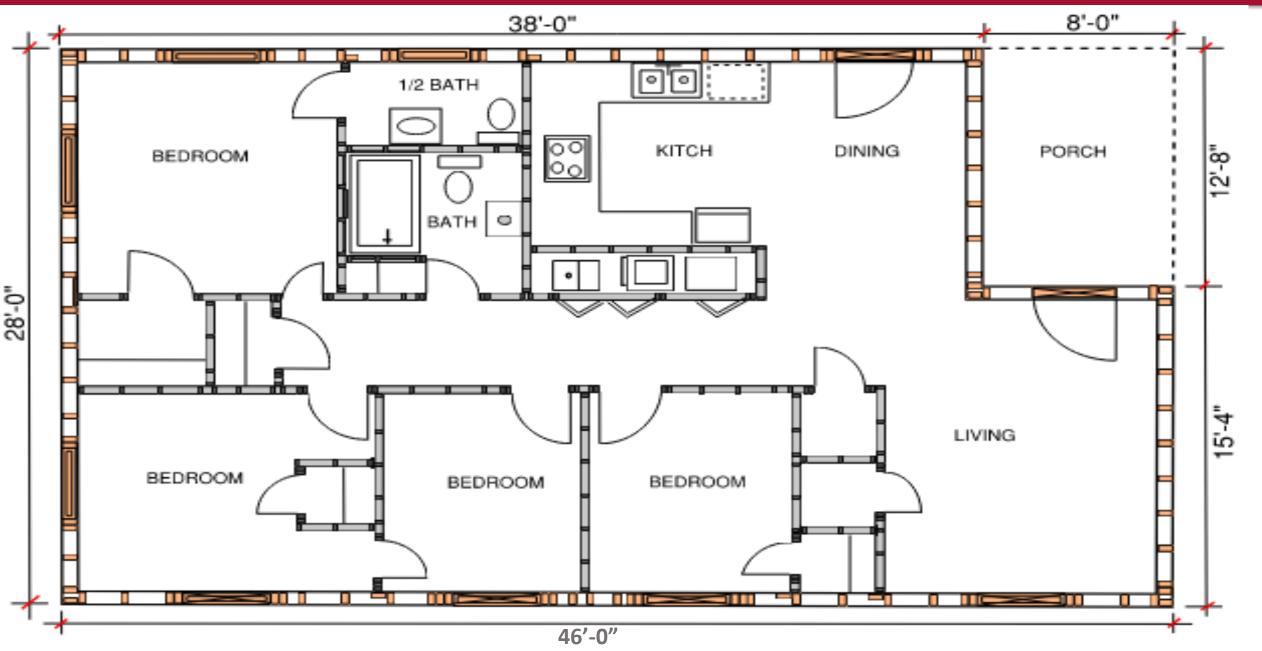
Adopted from ROCKWOOL Board Insulation Attachment Guide, Version 1.0, July 2022

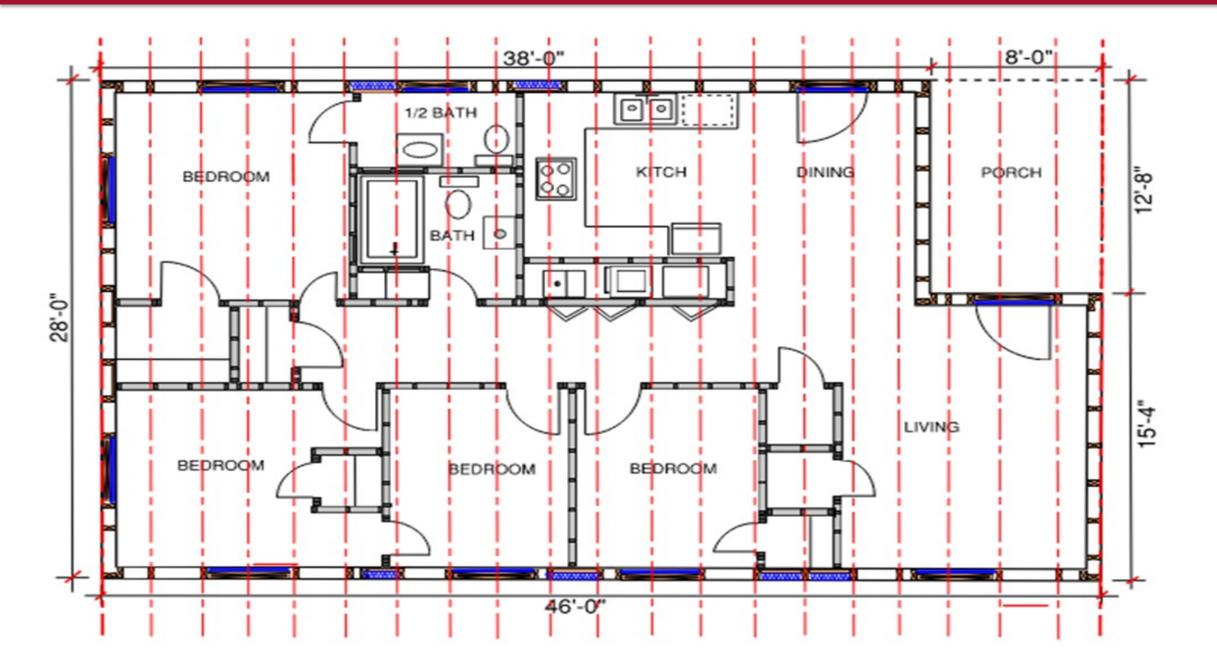

ATTACHMENT METHOD FOR CONTINUOUS INSULATION WITH STRAPPING

- Fastened with long screws into the backup wall structure, i.e., studs
- Cladding is attached with separate fasteners into the strapping, (furring)
- Vertical strapping is best for ventilation and drainage, install perforated metal if horizontal


Exterior Insulation Thickness	Maximum Vertical Screw Spacing	Minimum Screw Diameter	Minimum Screw Embedment	Minimum Strapping Size	
	16″ o.c. W	ood-Frame V	Vall Assemblie	5	
	Light W	eight Claddir	ng < 5 lbs/ft²		
up to 3"	24″				
>3" to 6"	16″	#10	4 4 10 11		
>6" to 9"	16″	#4.0	1-1/2"	3/4" × 2-1/2"	
>9" to 12"	8″	#12			
M	edium Weigh	t Cladding 5	lbs/ft² to < 10 ll	os/ft²	
up to 3"	16"	#12			
>3" to 6"	12″	#12	1-1/2"	3/4" × 3"	
>6" to 9"	12″	#14	1-1/2	3/4" × 3"	
>9" to 12"	8″	#14			
н	eavy Weight (Cladding 10 l	bs/ft^2 to < 15 lb	os/ft ²	
up to 3"	16″				
>3" to 6"	12″	#14			
>6" to 9"	12″	5/16″	1-1/2"	3/4" × 3-1/2"	
>9" to 12"	10″	5/16"			
	24" o.c. W	ood-Frame V	Vall Assemblie	5	
	Light W	eight Claddir	ng < 5 lbs/ft²		
up to 3"	16″				
>3" to 6"	12"	#10			
>6" to 9"	12"		1-1/2"	3/4" × 2-1/2"	
>9" to 12"	6″	#12			
M	edium Weigh	t Cladding 5	lbs/ft^2 to < 10 ll	os/ft²	
up to 3"	12″				
>3" to 6"	8″	#12			
>6" to 9"	.8″		1-1/2"	3/4" × 3"	
>9" to 12"	6″	#14			
н	eavy Weight (Cladding 10 I	bs/ft^2 to < 15 lb	os/ft²	
up to 3"	16″				
>3" to 6"	12″	#14			
>6" to 9"	12"		1-1/2"	3/4" × 3-1/2"	
>9" to 12"	6″	5/16″			
16" o.c. Steel Stud Wall Assemblies					
		eight Claddir			
up to 3"	16"				
>3" to 6"	12"	#12	through stud flange		
>6" to 9"	10"			20ga hat track	
	Medium Weight Cladding 5 lbs/ft ² to < 10 lbs/ft ²				
up to 3"	12"				
>3" to 6"	10"	#12	through stud		
>6" to 9"	8″		flange	20ga hat track	
Heavy Weight Cladding 10 lbs/ft ² to < 15 lbs/ft ²					
up to 3"	12"				
>3" to 6"	8″	#14 ^t	through stud		
>6" to 9"	6″		flange	20ga hat track	

PENETRATIONS




INTEGRATING FENESTRATIONS WITH EXTERIOR MINERAL FIBER CONTINUOUS INSULATION

Wood Frame Construction Up To 4 Stories: Lightweight Cladding, Rockwool, Details 10, 11, 12. June, 2020.

16" O.C. LAYOUT, DOUBLE TOP PLATES, 3 STUD CORNERS, LADDER BACKING, GWB BACKING, UNNECESSARY HEADERS, DOUBLE SILL / HEAD PLATES, STANDARD HEAL TRUSS, NO CONTINUOUS INSULATION,

Structural Integrity - align the vertical framing members under the roof trusses or rafters, a direct load path is created where compression and tension loads are directly transferred through the vertical framing members.

Cost Effectiveness - more resource efficient than conventional framing. By optimizing framing material use, the builder can cut floor and wall framing material costs by up to 30 percent while reducing framing installation labor.

Sustainability - delivers even greater environmental dividends by optimizing material usage and reducing construction waste.

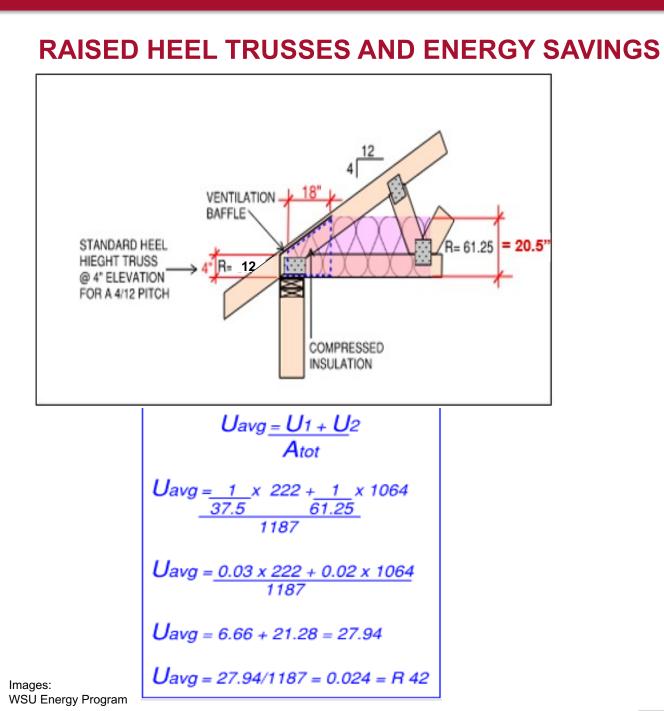
Energy Efficiency- proven method for cost-effectively meeting energy code requirements by maximizing space for cavity insulation and minimizing the potential for insulation voids, advanced framing delivers significant energy performance for the homeowner and cost savings for the builder.

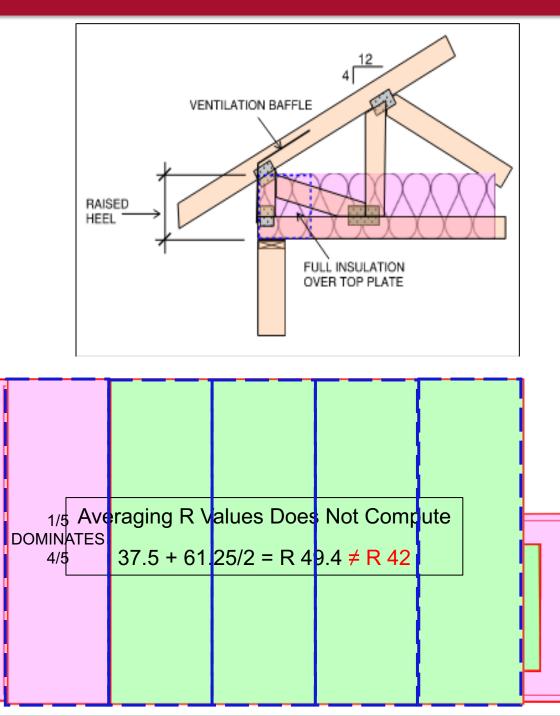
CONVENTIONAL FRAMING	ADVANCED FRAMING	
2x4 or 2x6 wood framing spaced 16 inches on center	2x6 wood framing spaced 24 inches on center	
Double top plates	Single top plate	
Three-stud corners	Two-stud corners	
Multiple jack studs	Minimal jack studs	
Double or triple headers	Single headers	
Multiple cripple studs	Minimal cripple studs	

INSULATION AND FENESTRATION U FACTOR and R VALUES REQUIREMENTS BY COMPONENT

CLIMATE ZONE 5 AND MARINE 4			
Fenestration U-Factor ^b	0.30		
Skylight U-Factor	0.50		
Ceiling U-Factor	0.024		
Above-Grade Wall U-Factor	0.056		
Floor U-Factor	0.029		
Slab on Grade F-Factor	0.54		
Below Grade 2' Depth			
Wall U-Factor	0.042		
Slab F-Factor	0.59		
Below Grade 3.5' Depth			
Wall U-Factor	0.040		
Slab F-Factor	0.56		
Below Grade 7' Depth			
Wall U-Factor	0.035		
Slab F-Factor	0.50		

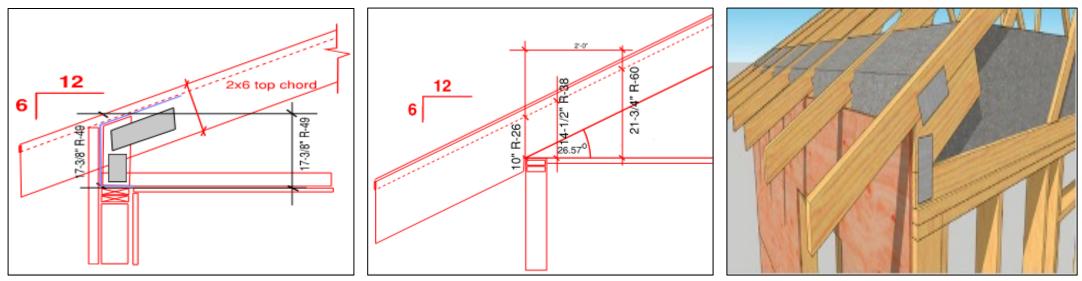
TABLE R402.1.3


CLIMATE ZONE 5 AND MARINE 4			
Fenestration U-Factor ^{b, j}	0.30		
Skylight ^b U-Factor	0.50		
Ceiling R-Value ^e	60		
Wood Frame Wall ^{g,i} R-Value	20+5 or 13+10		
Floor R-Value	30		
Below-Grade ^{c,h} Wall R-value	10/15/21 int + 5TB		
Slab ^{d,f} R-Value & Depth	10, 4 ft		

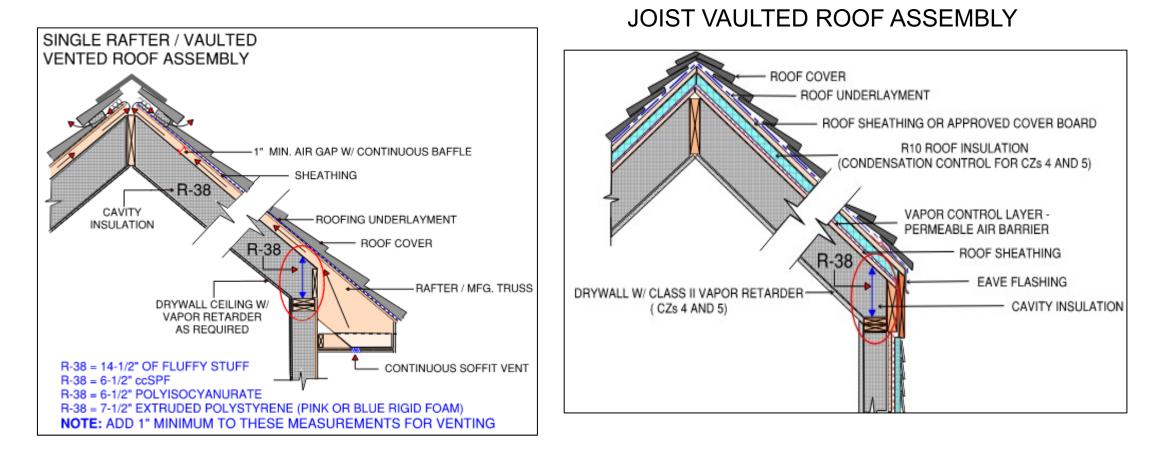

e. For single rafter- or joist-vaulted ceilings, the insulation may be reduced to R-38 if the full insulation depth extends over the top plate of the exterior wall.

a. U-factors or F-factors shall be obtained from measurement, calculation or an approved source, or as specified in Section R402.1.5.

R402.1.3 R-value alternative. Assemblies with R-value of insulation materials equal to or greater than that specified in Table R402.1.3 shall be an alternative to the U-factor in Table R402.1.2.


- Continuous insulation (ci) alone shall be used to determine compliance with the continuous insulation R-value requirements in Table R402.1.3.
- Cavity insulation R-values shall not be used to determine compliance with the continuous insulation R-value requirements in Table R402.1.3.

R402.2.1 Ceilings with attic spaces.


Where Section R402.1.3 would require R-60 in the ceiling or attic, *installing R-49 over 100 percent of the ceiling area requiring insulation shall satisfy the requirement for R-60 wherever the full height of uncompressed R-49 insulation extends over the wall top plate at the eaves.* This reduction shall not apply to the insulation and fenestration criteria in Section R402.1.2 and the Total UA alternative in Section R402.1.5.

R402.2.3 Eave baffle -

For air-permeable insulation in vented attics, a baffle shall be installed adjacent to soffit and eave vents. Baffles shall maintain a net free area opening equal to or greater than the size of the vent. Where soffit venting is not continuous, baffles shall be installed continuously to prevent ventilation air in the eave soffit from bypassing the baffle.

NOTE: Tall raised heel trusses may create a challenge with maximum building height restrictions.

UNVENTED SINGLE RAFTER /

e. For single rafter- or joist-vaulted ceilings, the insulation may be reduced to R-38 if the full insulation depth extends over the top plate of the exterior wall.

TABLE R402.1.2 INSULATION AND FENESTRATION REQUIREMENTS BY COMPONENT a

CLIMATE ZONE 5 AND MARINE 4			
Fenestration U-Factor ^b	0.30		
Skylight U-Factor	0.50		
Ceiling U-Factor	0.024		
Above-Grade Wall U-Factor	0.056		
Floor U-Factor	0.029		
Slab on Grade F-Factor	0.54		
Below Grade 2' Depth			
Wall U-Factor	0.042		
Slab F-Factor	0.59		
Below Grade 3.5' Depth			
Wall U-Factor	0.040		
Slab F-Factor	0.56		
Below Grade 7' Depth			
Wall U-Factor	0.035		
Slab F-Factor	0.50		

TABLE R402.1.3 INSULATION MINIMUM R-VALUES AND FENESTRATION REQUIREMENTS BY COMPONENTS a

CLIMATE ZONE 5 AND MARINE 4			
0.30			
0.50			
60			
20+5 or 13+10			
30			
10/15/21 int + 5TB			
10, 4 ft			

```
0.056 ≠ R 20 + 5 or R 13 + 10
1
0.056 = 17.86
```

R402.1.3 R-value alternative.

Assemblies with R-value of insulation materials equal to or greater than that specified in Table R402.1.3 shall be an alternative to the U-factor in Table R402.1.2.

R402.1.4 R-value computation.

- Cavity insulation alone shall be used to determine compliance with the cavity insulation R-value requirements in Table R402.1.3
- Continuous insulation (ci) alone shall be used to determine compliance with the continuous insulation R-value requirements in Table R402.1.3.
- Cavity insulation R-values shall not be used to determine compliance with the continuous insulation R-value requirements in Table R402.1.3.

PRESCRIPTIVE CONTINUOUS INSULATION APPLICATION REQUIREMENTS

2021 WSEC-R:

- Wood Frame Wall R-Value 20+5 or 13+10
- Vapor Retarder R402.1.1 0 references R702.7 of IRC or 1404.3 of IBC

2021 IRC:

• Table R702.7(4) Continuous Insulation with Class II Vapor Retarder

CLIMATE ZONE	CLASS II VAPOR RETARDERS PERMITTED FOR: ^a		
4, 5 and 6	Continuous insulation with <i>R</i> -value \ge 3 over 2 × 4 wall. Continuous insulation with <i>R</i> -value \ge 5 over 2 × 6 wall.		

a. The requirements in this table apply only to insulation used to control moisture in order to permit the use of Class II vapor retarders. The insulation materials used to satisfy this option also contribute to but do not supersede the thermal envelope requirements of Chapter 11.

EXCEPTION:

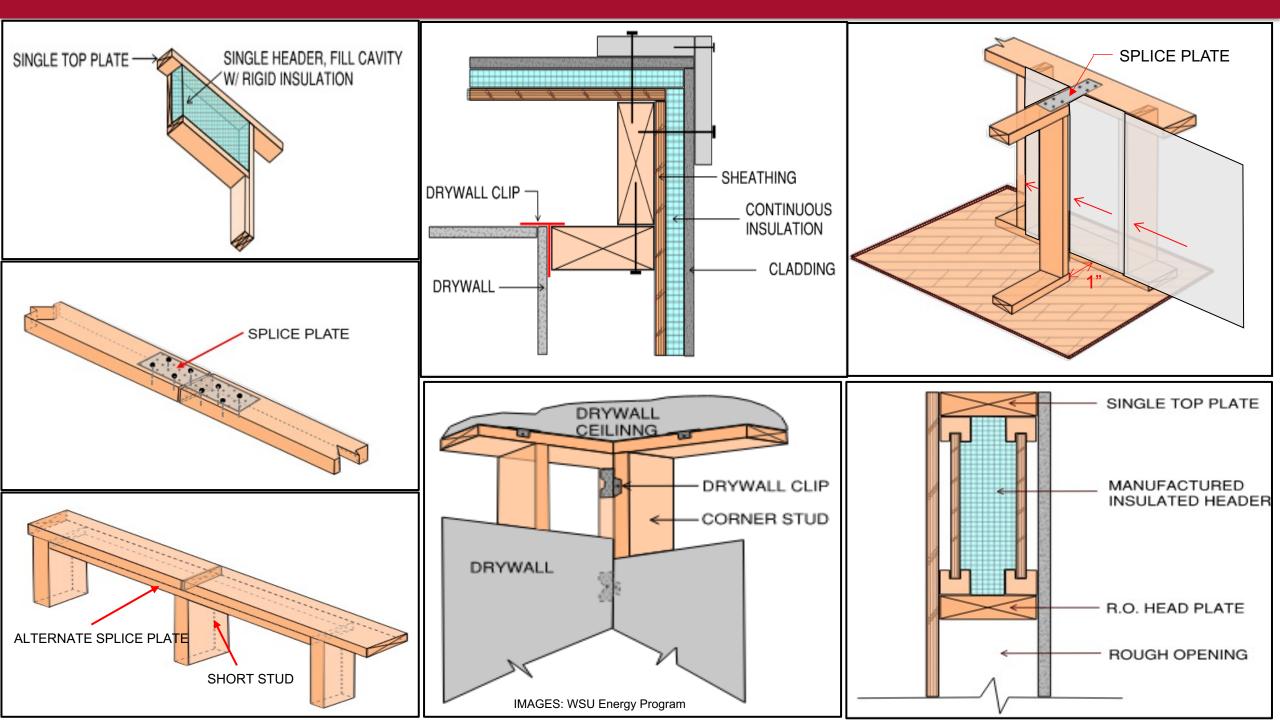
- Unheated accessory structures
- Unheated storage rooms \leq 70 S.F. and carports

• Table R702.7(3) Class III Vapor Retarders

CLIMATE ZONE	CLASS III VAPOR RETARDERS PERMITTED FOR: ^{a, b}		
Marine 4	Vented cladding over wood structural panels.		
	Vented cladding over fiberboard.		
	Vented cladding over gypsum.		
	Continuous insulation with <i>R</i> -value \geq 2.5 over 2 × 4 wall.		
	Continuous insulation with <i>R</i> -value \geq 3.75 over 2 × 6 wall.		

a.Vented cladding shall include vinyl, polypropylene, or horizontal aluminum siding, brick veneer with a clear airspace as specified in Table R703.8.4(1), and other approved vented claddings.

b. The requirements in this table apply only to insulation used to control moisture in order to permit the use of Class III vapor retarders. The insulation materials used to satisfy this option also contribute to but do not supersede the thermal envelope requirements of Chapter 11.


• TABLE R702.7(2)VAPOR RETARDER OPTIONS

CLIMATE ZONE	VAPOR RETARDER CLASS			
	CLASS I ^a	CLASS li ^a	CLASS III	
1, 2	Not Permitted	Not Permitted	Permitted	
3, 4 (except Marine 4)	Not Permitted	Permitted ^c	Permitted	
	Marine 4, 5, 6, 7, 8	Permitted ^b	Permitted ^c	See <u>Table</u> <u>R702.7(3)</u>

a.Class I and II vapor retarders with vapor permeance greater than 1 perm when measured by ASTM E96 water method (Procedure B) shall be allowed on the interior side of any frame wall in all climate zones.

b.Use of a Class I interior vapor retarder in frame walls with a Class I vapor retarder on the exterior side shall require an approved design.

c.Where a Class II vapor retarder is used in combination with foam plastic insulating sheathing installed as continuous insulation on the exterior side of frame walls, the continuous insulation shall comply with Table R702.7(4) and the Class II vapor retarder shall have a vapor permeance greater than 1 perm when measured by ASTM E96 water method (Procedure B).

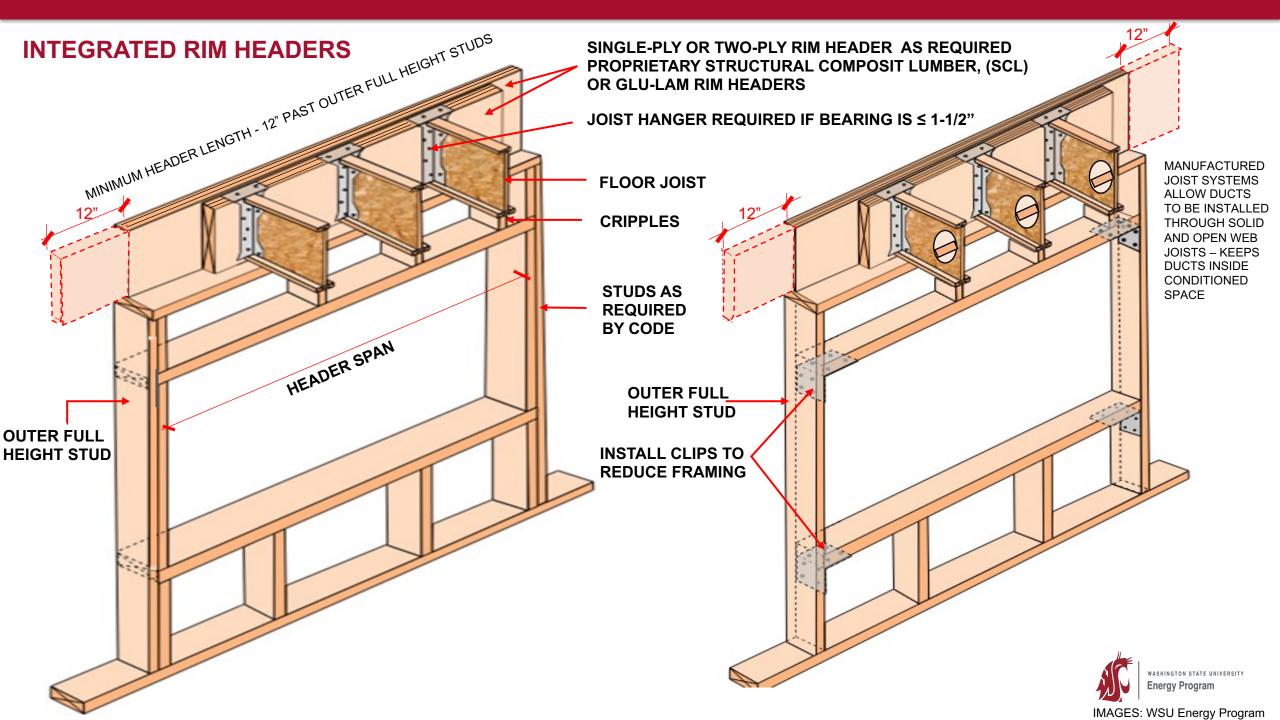


Photo: ptbotruss.com, Engineered Joists

Photo: Glavin Homes, Ducts in Conditioned Space, Amanda Glavin, April 25, 2014

RESOURCES

- Converting to Advanced Framing: Learn from Experience, American Plywood Association, (APA)
 <u>www.apawood.org/converting-to-advanced-framing</u>
- Energy Vanguard Flat or Lumpy How Would You Like Your Insulation?, Allison Bailes, 6/28/2010 https://www.energyvanguard.com/blog/flat-or-lumpy-how-would-you-like-your-insulation/
- Advanced Framing Construction Guide, APA The Engineered Wood Association, January, 2014
 https://www.apawood.org/advanced-framing
- Continuousinsulation.org, Applied Building Technology Group, LLC, 6/30/2021
- U.S. Dept. of Energy Building America Case Study, Measure Guideline: Guidance on Taped Insulating Sheathing Drainage Planes, DOE/GO-102014-4202 · November 2014
- Baker, Peter & LePage, Robert; Cladding Attachment Over Thick Exterior Insulating Sheathing, BA-1314, Building Science Corporation July 15,2013
- <u>buildingscience.com/documents/insights/bsi-085-windows-can-be-a-pain</u>
- Lstiburek, J. & Grin, A, Building Science Corporation, "Building America Special Research Project: Deployment of Advanced Framing at the Community Scale, Building America Report 1004, November 15, 2010
- Crandell, J. & Ahrenholz, T. Foam Plastics Applications for Better Living, "Energy Code Math Lesson: Why an R-25 Wall is Not Equal to a R-20+5ci", August 7, 2017
- Miles, J. Miles & Associates Inc., "Calculate the R Value of a wall assembly", Nov. 8, 2012
- Guide to Insulating Sheathing, Building Science Corporation, Revised January, 2007 buildingscience.com/sites/default/files/migrate/pdf/GM_Guide_Insulating_Sheathing.pdf

washington state university Energy Program

Thank You!

For additional information, visit our website at www.energy.wsu.edu

> 360-956-2042 EnergyCode@energy.wsu.edu